Laboratory of Physical Chemistry and NCCR Catalysis, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland.
Microsoft Quantum, Redmond, Washington 98052, USA.
J Chem Phys. 2023 Feb 28;158(8):084803. doi: 10.1063/5.0136526.
Quantum chemical calculations on atomistic systems have evolved into a standard approach to studying molecular matter. These calculations often involve a significant amount of manual input and expertise, although most of this effort could be automated, which would alleviate the need for expertise in software and hardware accessibility. Here, we present the AutoRXN workflow, an automated workflow for exploratory high-throughput electronic structure calculations of molecular systems, in which (i) density functional theory methods are exploited to deliver minimum and transition-state structures and corresponding energies and properties, (ii) coupled cluster calculations are then launched for optimized structures to provide more accurate energy and property estimates, and (iii) multi-reference diagnostics are evaluated to back check the coupled cluster results and subject them to automated multi-configurational calculations for potential multi-configurational cases. All calculations are carried out in a cloud environment and support massive computational campaigns. Key features of all components of the AutoRXN workflow are autonomy, stability, and minimum operator interference. We highlight the AutoRXN workflow with the example of an autonomous reaction mechanism exploration of the mode of action of a homogeneous catalyst for the asymmetric reduction of ketones.
基于原子体系的量子化学计算已经发展成为研究分子物质的一种标准方法。这些计算通常需要大量的手动输入和专业知识,尽管大部分工作都可以自动化,这将减轻对软件和硬件访问的专业知识的需求。在这里,我们提出了 AutoRXN 工作流程,这是一种用于分子系统探索性高通量电子结构计算的自动化工作流程,其中:(i) 利用密度泛函理论方法提供最小和过渡态结构以及相应的能量和性质;(ii) 然后启动耦合簇计算以优化结构,提供更准确的能量和性质估计;(iii) 评估多参考诊断以回溯检查耦合簇结果,并对其进行自动多组态计算,以用于潜在的多组态情况。所有计算都在云环境中进行,并支持大规模计算活动。AutoRXN 工作流程的所有组件的关键特点是自主性、稳定性和最小的操作员干扰。我们以自主探索均相催化剂对酮的不对称还原作用的反应机制为例,突出了 AutoRXN 工作流程。