Stan-Bernhardt Alexandra, Glinkina Liubov, Hulm Andreas, Ochsenfeld Christian
Chair of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), Butenandtstrasse 5, D-81377 München, Germany.
Max Planck Institute for Solid State Research, Heisenbergstrasse 1, D-70569 Stuttgart, Germany.
ACS Cent Sci. 2024 Jan 31;10(2):302-314. doi: 10.1021/acscentsci.3c01403. eCollection 2024 Feb 28.
In recent years, first-principles exploration of chemical reaction space has provided valuable insights into intricate reaction networks. Here, we introduce hyperreactor dynamics, which enables rapid screening of the accessible chemical space from a given set of initial molecular species, predicting new synthetic routes that can potentially guide subsequent experimental studies. For this purpose, different hyperdynamics derived bias potentials are applied along with pressure-inducing spherical confinement of the molecular system in molecular dynamics simulations to efficiently enhance reactivity under mild conditions. To showcase the advantages and flexibility of the hyperreactor approach, we present a systematic study of the method's parameters on a HCN toy model and apply it to a recently introduced experimental model for the prebiotic formation of glycinal and acetamide in interstellar ices, which yields results in line with experimental findings. In addition, we show how the developed framework enables the study of complicated transitions like the first step of a nonenzymatic DNA nucleoside synthesis in an aqueous environment, where the molecular fragmentation problem of earlier nanoreactor approaches is avoided.
近年来,化学反应空间的第一性原理探索为复杂的反应网络提供了有价值的见解。在此,我们引入了超反应器动力学,它能够从给定的一组初始分子物种中快速筛选可及的化学空间,预测新的合成路线,这些路线可能指导后续的实验研究。为此,在分子动力学模拟中,将不同的超动力学衍生偏置势与分子系统的压力诱导球形限制相结合,以在温和条件下有效地增强反应活性。为了展示超反应器方法的优势和灵活性,我们对HCN玩具模型上该方法的参数进行了系统研究,并将其应用于最近引入的星际冰中甘氨醛和乙酰胺益生元形成的实验模型,所得结果与实验发现一致。此外,我们展示了所开发的框架如何能够研究复杂的转变,如在水环境中非酶促DNA核苷合成第一步的转变,其中避免了早期纳米反应器方法的分子碎片化问题。