Suppr超能文献

对比人工智能和非人工智能方法在 MRI 容积测量中诊断帕金森综合征的验证。

Comparative validation of AI and non-AI methods in MRI volumetry to diagnose Parkinsonian syndromes.

机构信息

Department of Neurology and Neuroscience Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.

Medical AI Research Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, Republic of Korea.

出版信息

Sci Rep. 2023 Mar 1;13(1):3439. doi: 10.1038/s41598-023-30381-w.

Abstract

Automated segmentation and volumetry of brain magnetic resonance imaging (MRI) scans are essential for the diagnosis of Parkinson's disease (PD) and Parkinson's plus syndromes (P-plus). To enhance the diagnostic performance, we adopt deep learning (DL) models in brain MRI segmentation and compared their performance with the gold-standard non-DL method. We collected brain MRI scans of healthy controls ([Formula: see text]) and patients with PD ([Formula: see text]), multiple systemic atrophy ([Formula: see text]), and progressive supranuclear palsy ([Formula: see text]) at Samsung Medical Center from January 2017 to December 2020. Using the gold-standard non-DL model, FreeSurfer (FS), we segmented six brain structures: midbrain, pons, caudate, putamen, pallidum, and third ventricle, and considered them as annotated data for DL models, the representative convolutional neural network (CNN) and vision transformer (ViT)-based models. Dice scores and the area under the curve (AUC) for differentiating normal, PD, and P-plus cases were calculated to determine the measure to which FS performance can be reproduced as-is while increasing speed by the DL approaches. The segmentation times of CNN and ViT for the six brain structures per patient were 51.26 ± 2.50 and 1101.82 ± 22.31 s, respectively, being 14 to 300 times faster than FS (15,735 ± 1.07 s). Dice scores of both DL models were sufficiently high (> 0.85) so their AUCs for disease classification were not inferior to that of FS. For classification of normal vs. P-plus and PD vs. P-plus (except multiple systemic atrophy - Parkinsonian type) based on all brain parts, the DL models and FS showed AUCs above 0.8, demonstrating the clinical value of DL models in addition to FS. DL significantly reduces the analysis time without compromising the performance of brain segmentation and differential diagnosis. Our findings may contribute to the adoption of DL brain MRI segmentation in clinical settings and advance brain research.

摘要

脑磁共振成像(MRI)扫描的自动分割和容积测量对于帕金森病(PD)和帕金森综合征(P-plus)的诊断至关重要。为了提高诊断性能,我们在脑 MRI 分割中采用深度学习(DL)模型,并将其性能与金标准非 DL 方法进行比较。我们收集了 2017 年 1 月至 2020 年 12 月期间在三星医疗中心的健康对照组([Formula: see text])和 PD 患者([Formula: see text])、多系统萎缩症([Formula: see text])和进行性核上性麻痹症([Formula: see text])的脑 MRI 扫描。使用金标准非 DL 模型 FreeSurfer(FS),我们分割了六个脑结构:中脑、脑桥、尾状核、壳核、苍白球和第三脑室,并将其视为 DL 模型(代表性的卷积神经网络(CNN)和基于视觉变压器(ViT)的模型)的注释数据。计算 Dice 评分和区分正常、PD 和 P-plus 病例的曲线下面积(AUC),以确定 FS 性能在提高速度的同时,以何种程度可以原样复制。对于每个患者的六个脑结构,CNN 和 ViT 的分割时间分别为 51.26 ± 2.50 和 1101.82 ± 22.31 s,分别比 FS(15735 ± 1.07 s)快 14 到 300 倍。两种 DL 模型的 Dice 评分都足够高(>0.85),因此它们用于疾病分类的 AUC 不逊于 FS。对于基于所有脑区的正常与 P-plus 和 PD 与 P-plus(多系统萎缩 - 帕金森型除外)的分类,DL 模型和 FS 的 AUC 均高于 0.8,表明 DL 模型除 FS 之外,在临床诊断中具有价值。DL 显著减少了分析时间,而不会影响脑分割和鉴别诊断的性能。我们的研究结果可能有助于在临床环境中采用 DL 脑 MRI 分割,并推进脑研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41f6/10156821/1c3ccecad103/41598_2023_30381_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验