文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

深度学习 MRI 荟萃分析:革命性的早期阿尔茨海默病和轻度认知障碍诊断。

Revolutionizing early Alzheimer's disease and mild cognitive impairment diagnosis: a deep learning MRI meta-analysis.

机构信息

Beijing Tsinghua Changgung Hospital, Department of Radiology, Beijing, China.

Tsinghua University, School of Clinical Medicine, Beijing, China.

出版信息

Arq Neuropsiquiatr. 2024 Aug;82(8):1-10. doi: 10.1055/s-0044-1788657. Epub 2024 Aug 15.


DOI:10.1055/s-0044-1788657
PMID:39146974
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11500276/
Abstract

BACKGROUND: The early diagnosis of Alzheimer's disease (AD) and mild cognitive impairment (MCI) remains a significant challenge in neurology, with conventional methods often limited by subjectivity and variability in interpretation. Integrating deep learning with artificial intelligence (AI) in magnetic resonance imaging (MRI) analysis emerges as a transformative approach, offering the potential for unbiased, highly accurate diagnostic insights. OBJECTIVE: A meta-analysis was designed to analyze the diagnostic accuracy of deep learning of MRI images on AD and MCI models. METHODS: A meta-analysis was performed across PubMed, Embase, and Cochrane library databases following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, focusing on the diagnostic accuracy of deep learning. Subsequently, methodological quality was assessed using the QUADAS-2 checklist. Diagnostic measures, including sensitivity, specificity, likelihood ratios, diagnostic odds ratio, and area under the receiver operating characteristic curve (AUROC) were analyzed, alongside subgroup analyses for T1-weighted and non-T1-weighted MRI. RESULTS: A total of 18 eligible studies were identified. The Spearman correlation coefficient was -0.6506. Meta-analysis showed that the combined sensitivity and specificity, positive likelihood ratio, negative likelihood ratio, and diagnostic odds ratio were 0.84, 0.86, 6.0, 0.19, and 32, respectively. The AUROC was 0.92. The quiescent point of hierarchical summary of receiver operating characteristic (HSROC) was 3.463. Notably, the images of 12 studies were acquired by T1-weighted MRI alone, and those of the other 6 were gathered by non-T1-weighted MRI alone. CONCLUSION: Overall, deep learning of MRI for the diagnosis of AD and MCI showed good sensitivity and specificity and contributed to improving diagnostic accuracy.

摘要

背景:阿尔茨海默病(AD)和轻度认知障碍(MCI)的早期诊断仍然是神经科的一个重大挑战,传统方法通常受到主观性和解释变异性的限制。将深度学习与磁共振成像(MRI)分析中的人工智能(AI)相结合,成为一种变革性的方法,为无偏、高度准确的诊断见解提供了可能。

目的:本研究旨在通过荟萃分析评估 MRI 图像深度学习在 AD 和 MCI 模型中的诊断准确性。

方法:根据系统评价和荟萃分析的首选报告项目(PRISMA)指南,对 PubMed、Embase 和 Cochrane 图书馆数据库进行荟萃分析,重点关注深度学习的诊断准确性。随后,使用 QUADAS-2 清单评估方法学质量。分析了诊断措施,包括敏感性、特异性、似然比、诊断比值比和受试者工作特征曲线下的面积(AUROC),并对 T1 加权和非 T1 加权 MRI 进行了亚组分析。

结果:共纳入 18 项符合条件的研究。Spearman 相关系数为-0.6506。荟萃分析显示,合并的敏感性和特异性、阳性似然比、阴性似然比和诊断比值比分别为 0.84、0.86、6.0、0.19 和 32,AUROC 为 0.92。分层汇总受试者工作特征(HSROC)的静止点为 3.463。值得注意的是,12 项研究的图像仅由 T1 加权 MRI 采集,另外 6 项研究的图像仅由非 T1 加权 MRI 采集。

结论:总体而言,MRI 图像的深度学习在 AD 和 MCI 的诊断中表现出良好的敏感性和特异性,有助于提高诊断准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e48/11500276/28e264a2a210/10-1055-s-0044-1788657-i240034-4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e48/11500276/91a496afc284/10-1055-s-0044-1788657-i240034-1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e48/11500276/2cadc646d052/10-1055-s-0044-1788657-i240034-2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e48/11500276/4355fe878777/10-1055-s-0044-1788657-i240034-3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e48/11500276/28e264a2a210/10-1055-s-0044-1788657-i240034-4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e48/11500276/91a496afc284/10-1055-s-0044-1788657-i240034-1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e48/11500276/2cadc646d052/10-1055-s-0044-1788657-i240034-2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e48/11500276/4355fe878777/10-1055-s-0044-1788657-i240034-3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e48/11500276/28e264a2a210/10-1055-s-0044-1788657-i240034-4.jpg

相似文献

[1]
Revolutionizing early Alzheimer's disease and mild cognitive impairment diagnosis: a deep learning MRI meta-analysis.

Arq Neuropsiquiatr. 2024-8

[2]
Structural magnetic resonance imaging for the early diagnosis of dementia due to Alzheimer's disease in people with mild cognitive impairment.

Cochrane Database Syst Rev. 2020-3-2

[3]
¹⁸F-FDG PET for the early diagnosis of Alzheimer's disease dementia and other dementias in people with mild cognitive impairment (MCI).

Cochrane Database Syst Rev. 2015-1-28

[4]
A parameter-efficient deep learning approach to predict conversion from mild cognitive impairment to Alzheimer's disease.

Neuroimage. 2019-1-14

[5]
(11)C-PIB-PET for the early diagnosis of Alzheimer's disease dementia and other dementias in people with mild cognitive impairment (MCI).

Cochrane Database Syst Rev. 2014-7-23

[6]
Plasma and cerebrospinal fluid amyloid beta for the diagnosis of Alzheimer's disease dementia and other dementias in people with mild cognitive impairment (MCI).

Cochrane Database Syst Rev. 2014-6-10

[7]
Latent diffusion model-based MRI superresolution enhances mild cognitive impairment prognostication and Alzheimer's disease classification.

Neuroimage. 2024-8-1

[8]
Diagnostic performance of MRI radiomics for classification of Alzheimer's disease, mild cognitive impairment, and normal subjects: a systematic review and meta-analysis.

Aging Clin Exp Res. 2023-11

[9]
Exploring the Value of MRI Measurement of Hippocampal Volume for Predicting the Occurrence and Progression of Alzheimer's Disease Based on Artificial Intelligence Deep Learning Technology and Evidence-Based Medicine Meta-Analysis.

J Alzheimers Dis. 2024

[10]
Predicting cognitive decline: Deep-learning reveals subtle brain changes in pre-MCI stage.

J Prev Alzheimers Dis. 2025-5

引用本文的文献

[1]
Artificial Intelligence in Alzheimer's Disease Diagnosis and Prognosis Using PET-MRI: A Narrative Review of High-Impact Literature Post-Tauvid Approval.

J Clin Med. 2025-8-21

本文引用的文献

[1]
Multimodal classification of Alzheimer's disease and mild cognitive impairment using custom MKSCDDL kernel over CNN with transparent decision-making for explainable diagnosis.

Sci Rep. 2024-1-20

[2]
A Deep Learning-Based Ensemble Method for Early Diagnosis of Alzheimer's Disease using MRI Images.

Neuroinformatics. 2024-1

[3]
Limitations of Out-of-Distribution Detection in 3D Medical Image Segmentation.

J Imaging. 2023-9-18

[4]
Bias in artificial intelligence algorithms and recommendations for mitigation.

PLOS Digit Health. 2023-6-22

[5]
Alzheimer's disease diagnosis and classification using deep learning techniques.

PeerJ Comput Sci. 2022-12-20

[6]
Automated Medical Diagnosis of Alzheimer´s Disease Using an Efficient Net Convolutional Neural Network.

J Med Syst. 2023-5-2

[7]
Diagnosing and Treating Alzheimer Disease During the Early Stage.

J Clin Psychiatry. 2023-3-22

[8]
Comparative validation of AI and non-AI methods in MRI volumetry to diagnose Parkinsonian syndromes.

Sci Rep. 2023-3-1

[9]
Multi-Perspective Feature Extraction and Fusion Based on Deep Latent Space for Diagnosis of Alzheimer's Diseases.

Brain Sci. 2022-10-5

[10]
Diagnostic accuracy study of automated stratification of Alzheimer's disease and mild cognitive impairment via deep learning based on MRI.

Ann Transl Med. 2022-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索