Wang Ge, Lu Zhilun, Li Yong, Li Linhao, Ji Hongfen, Feteira Antonio, Zhou Di, Wang Dawei, Zhang Shujun, Reaney Ian M
Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD, U.K.
The Henry Royce Institute, Sir Robert Hadfield Building, Sheffield S1 3JD, U.K.
Chem Rev. 2021 May 26;121(10):6124-6172. doi: 10.1021/acs.chemrev.0c01264. Epub 2021 Apr 28.
Materials exhibiting high energy/power density are currently needed to meet the growing demand of portable electronics, electric vehicles and large-scale energy storage devices. The highest energy densities are achieved for fuel cells, batteries, and supercapacitors, but conventional dielectric capacitors are receiving increased attention for pulsed power applications due to their high power density and their fast charge-discharge speed. The key to high energy density in dielectric capacitors is a large maximum but small remanent (zero in the case of linear dielectrics) polarization and a high electric breakdown strength. Polymer dielectric capacitors offer high power/energy density for applications at room temperature, but above 100 °C they are unreliable and suffer from dielectric breakdown. For high-temperature applications, therefore, dielectric ceramics are the only feasible alternative. Lead-based ceramics such as La-doped lead zirconate titanate exhibit good energy storage properties, but their toxicity raises concern over their use in consumer applications, where capacitors are exclusively lead free. Lead-free compositions with superior power density are thus required. In this paper, we introduce the fundamental principles of energy storage in dielectrics. We discuss key factors to improve energy storage properties such as the control of local structure, phase assemblage, dielectric layer thickness, microstructure, conductivity, and electrical homogeneity through the choice of base systems, dopants, and alloying additions, followed by a comprehensive review of the state-of-the-art. Finally, we comment on the future requirements for new materials in high power/energy density capacitor applications.
目前需要具有高能量/功率密度的材料来满足便携式电子设备、电动汽车和大规模储能设备不断增长的需求。燃料电池、电池和超级电容器能实现最高的能量密度,但传统介电电容器因其高功率密度和快速充放电速度,在脉冲功率应用中受到越来越多的关注。介电电容器实现高能量密度的关键在于具有大的最大极化强度但剩余极化强度小(线性电介质情况下为零)以及高的电击穿强度。聚合物介电电容器在室温应用中具有高功率/能量密度,但在100℃以上时不可靠且会发生介电击穿。因此,对于高温应用,介电陶瓷是唯一可行的选择。诸如镧掺杂锆钛酸铅等铅基陶瓷具有良好的储能性能,但其毒性引发了对其在消费应用中使用的担忧,因为消费应用中的电容器完全不含铅。因此需要具有卓越功率密度的无铅成分。在本文中,我们介绍了电介质储能的基本原理。我们讨论了改善储能性能的关键因素,例如通过选择基础体系、掺杂剂和合金添加物来控制局部结构、相组成、介电层厚度、微观结构、电导率和电均匀性,随后对当前的技术水平进行了全面综述。最后,我们对高功率/能量密度电容器应用中新材料的未来要求进行了评论。