Suppr超能文献

改进荷兰风险均等化模型中的基于诊断的费用分组:一种新聚类方法和允许多病共存的影响。

Improving diagnosis-based cost groups in the Dutch risk equalization model: the effects of a new clustering method and allowing for multimorbidity.

机构信息

Erasmus School of Health Policy & Management, Erasmus University Rotterdam, Rotterdam, The Netherlands.

出版信息

Int J Health Econ Manag. 2023 Jun;23(2):303-324. doi: 10.1007/s10754-023-09345-0. Epub 2023 Mar 2.

Abstract

Health insurance markets with community-rated premiums typically use risk equalization (RE) to compensate insurers for predictable profits on people in good health and predictable losses on those with a chronic disease. Over the past decades RE models have evolved from simple demographic models to sophisticated health-based models. Despite the improvements, however, non-trivial predictable profits and losses remain. This study examines to what extent the Dutch RE model can be further improved by redesigning one key morbidity adjuster: the Diagnosis-based Cost Groups (DCGs). This redesign includes (1) revision of the underlying hospital diagnoses and treatments ('dxgroups'), (2) application of a new clustering procedure, and (3) allowing multi-qualification. We combine data on spending, risk characteristics and hospital claims for all individuals with basic health insurance in the Netherlands in 2017 (N = 17 m) with morbidity data from general practitioners (GPs) for a subsample (N = 1.3 m). We first simulate a baseline RE model (i.e., the RE model of 2020) and then modify three important features of the DCGs. In a second step, we evaluate the effect of the modifications in terms of predictable profits and losses for subgroups of consumers that are potentially vulnerable to risk selection. While less prominent results are found for subgroups derived from the GP data, our results demonstrate substantial reductions in predictable profits and losses at the level of dxgroups and for individuals with multiple dxgroups. An important takeaway from our paper is that smart design of morbidity adjusters in RE can help mitigate selection incentives.

摘要

医疗保险市场通常采用基于风险的定价(RE)来补偿保险公司在健康人群上的可预测利润和慢性病人群上的可预测损失。在过去几十年中,RE 模型已经从简单的人口统计学模型发展到复杂的基于健康的模型。然而,尽管有所改进,仍然存在不小的可预测利润和损失。本研究通过重新设计一个关键的疾病调整因素:基于诊断的费用组(DCG),来探究荷兰的 RE 模型在多大程度上可以进一步改进。这种重新设计包括:(1)修订基础医院诊断和治疗(“dxgroups”);(2)应用新的聚类程序;(3)允许多资格。我们将 2017 年荷兰所有基本健康保险个人的支出、风险特征和医院理赔数据(N=1700 万)与一般从业者(GP)的发病数据(N=130 万)相结合。我们首先模拟了一个基本的 RE 模型(即 2020 年的 RE 模型),然后修改了 DCG 的三个重要特征。在第二步中,我们根据可能容易受到风险选择影响的消费者亚组的可预测利润和损失来评估修改的效果。虽然从 GP 数据得出的亚组结果不太明显,但我们的结果表明,在 dxgroups 层面和患有多个 dxgroups 的个人层面,可预测的利润和损失有了实质性的减少。我们这篇论文的一个重要启示是,RE 中疾病调整因素的巧妙设计可以帮助减轻选择激励。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/40a7/10156830/a1b04c2b34e7/10754_2023_9345_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验