Eijkenaar Frank, van Vliet René C J A, van Kleef Richard C
Erasmus School of Health Policy and Management, Erasmus University Rotterdam, Rotterdam, The Netherlands.
Med Care. 2018 Jan;56(1):91-96. doi: 10.1097/MLR.0000000000000828.
The risk-equalization (RE) model in the Dutch health insurance market has evolved to a sophisticated model containing direct proxies for health. However, it still has important imperfections, leaving incentives for risk selection. This paper focuses on refining an important health-based risk-adjuster in this model: the diagnosis-based costs groups (DCGs). The current (2017) DCGs are calibrated on "old" data of 2011/2012, are mutually exclusive, and are essentially clusters of about 200 diagnosis-groups ("dxgroups").
Hospital claims data (2013), administrative data (2014) on costs and risk-characteristics for the entire Dutch population (N≈16.9 million), and health survey data (2012, N≈387,000) are used. The survey data are used to identify subgroups of individuals in poor or in good health. The claims and administrative data are used to develop alternative DCG-modalities to examine the impact on individual-level and group-level fit of recalibrating the DCGs based on new data, of allowing patients to be classified in multiple DCGs, and of refraining from clustering.
Recalibrating the DCGs and allowing enrolees to be classified into multiple DCGs lead to nontrivial improvements in individual-level and group-level fit (especially for cancer patients and people with comorbid conditions). The improvement resulting from refraining from clustering does not seem to justify the increase in model complexity this would entail.
The performance of the sophisticated Dutch RE-model can be improved by allowing classification in multiple (clustered) DCGs and using new data. Irrespective of the modality used, however, various subgroups remain significantly undercompensated. Further improvement of the RE-model merits high priority.
荷兰医疗保险市场的风险均等化(RE)模型已发展成为一个包含健康直接代理变量的复杂模型。然而,它仍存在重要缺陷,为风险选择留下了空间。本文聚焦于完善该模型中一个基于健康的重要风险调整因子:基于诊断的成本组(DCG)。当前(2017年)的DCG是根据2011/2012年的“旧”数据校准的,相互排斥,本质上是约200个诊断组(“dxgroups”)的聚类。
使用了医院理赔数据(2013年)、关于荷兰全体人口(N≈1690万)成本和风险特征的行政数据(2014年)以及健康调查数据(2012年,N≈38.7万)。调查数据用于识别健康状况差或好的个体亚组。理赔和行政数据用于开发替代的DCG模式,以检验基于新数据重新校准DCG、允许患者被归入多个DCG以及不进行聚类对个体层面和群体层面拟合的影响。
重新校准DCG并允许参保者被归入多个DCG可在个体层面和群体层面的拟合上带来显著改善(尤其是对癌症患者和患有合并症的人)。不进行聚类所带来的改善似乎并不足以证明这将导致的模型复杂性增加是合理的。
通过允许在多个(聚类的)DCG中进行分类并使用新数据,可提高复杂的荷兰RE模型的性能。然而,无论使用何种模式,各个亚组仍存在明显的补偿不足。RE模型的进一步改进应被高度优先考虑。