Suppr超能文献

用于CRISPR毒素-解毒剂基因驱动的远端位点拯救元件评估。

Assessment of distant-site rescue elements for CRISPR toxin-antidote gene drives.

作者信息

Chen Jingheng, Xu Xuejiao, Champer Jackson

机构信息

Center for Bioinformatics, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.

出版信息

Front Bioeng Biotechnol. 2023 Feb 13;11:1138702. doi: 10.3389/fbioe.2023.1138702. eCollection 2023.

Abstract

Gene drive is a genetic engineering technology that can enable super-mendelian inheritance of specific alleles, allowing them to spread through a population. New gene drive types have increased flexibility, offering options for confined modification or suppression of target populations. Among the most promising are CRISPR toxin-antidote gene drives, which disrupt essential wild-type genes by targeting them with Cas9/gRNA. This results in their removal, increasing the frequency of the drive. All these drives rely on having an effective rescue element, which consists of a recoded version of the target gene. This rescue element can be at the same site as the target gene, maximizing the chance of efficient rescue, or at a distant site, which allows useful options such as easily disrupting another essential gene or increasing confinement. Previously, we developed a homing rescue drive targeting a haplolethal gene and a toxin-antidote drive targeting a haplosufficient gene. These successful drives had functional rescue elements but suboptimal drive efficiency. Here, we attempted to construct toxin-antidote drives targeting these genes with a distant-site configuration from three loci in . We found that additional gRNAs increased cut rates to nearly 100%. However, all distant-site rescue elements failed for both target genes. Furthermore, one rescue element with a minimally recoded sequence was used as a template for homology-directed repair for the target gene on a different chromosomal arm, resulting in the formation of functional resistance alleles. Together, these results can inform the design of future CRISPR-based toxin-antidote gene drives.

摘要

基因驱动是一种基因工程技术,它能够实现特定等位基因的超孟德尔遗传,使其在种群中传播。新型基因驱动类型具有更高的灵活性,为限制修饰或抑制目标种群提供了多种选择。其中最具潜力的是CRISPR毒素-解毒剂基因驱动,它通过Cas9/gRNA靶向破坏必需的野生型基因,导致这些基因被去除,从而提高驱动的频率。所有这些驱动都依赖于一个有效的拯救元件,该元件由目标基因的重新编码版本组成。这个拯救元件可以与目标基因位于同一位置,以最大化有效拯救的机会,也可以位于远处,从而提供一些有用的选择,比如轻易破坏另一个必需基因或增强限制。此前,我们开发了一种靶向半致死基因的归巢拯救驱动和一种靶向单倍体充足基因的毒素-解毒剂驱动。这些成功的驱动具有功能性的拯救元件,但驱动效率并不理想。在这里,我们尝试构建从三个位点出发、具有远位配置的靶向这些基因的毒素-解毒剂驱动。我们发现额外的gRNA将切割率提高到了近100%。然而,对于这两个目标基因,所有远位拯救元件均失败。此外,一个具有最小化重新编码序列的拯救元件被用作不同染色体臂上目标基因同源定向修复的模板,导致了功能性抗性等位基因的形成。总之,这些结果可为未来基于CRISPR的毒素-解毒剂基因驱动的设计提供参考。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d63c/9968759/d08e7dddaa9d/fbioe-11-1138702-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验