Suppr超能文献

通过评估功能连接性和频谱功率对脑电图分析诊断和治疗自闭症的系统评价。

Systematic Review on EEG Analysis to Diagnose and Treat Autism by Evaluating Functional Connectivity and Spectral Power.

作者信息

Bogéa Ribeiro Louise, da Silva Filho Manoel

机构信息

Federal University of Pará, Assistive Prototyping Lab, Belém-PA, Brazil.

出版信息

Neuropsychiatr Dis Treat. 2023 Feb 22;19:415-424. doi: 10.2147/NDT.S394363. eCollection 2023.

Abstract

An abnormality in neural connectivity is linked to autism spectrum disorder (ASD). There is no way to test the concept of neural connectivity empirically. According to recent network theory and time series analysis findings, electroencephalography (EEG) can assess neural network architecture, a sign of activity in the brain. This systematic review aims to evaluate functional connectivity and spectral power using EEG signals. EEG records the brain activity of an individual by displaying wavy lines that depict brain cells' communication through electrical impulses. EEG can diagnose various brain disorders, including epilepsy and related seizure illness, brain dysfunction, tumors, and damage. We found 21 studies using two of the most common EEG analysis methods: functional connectivity and spectral power. ASD and non-ASD individuals were found to differ significantly in all selected papers. Due to high heterogeneity in the outcomes, generalizations cannot be drawn, and no single method is currently beneficial as a diagnostic tool. For ASD subtype delineation, the lack of research prevented the evaluation of these techniques as diagnostic tools. These findings confirm the presence of abnormalities in the EEG in ASD, but they are insufficient to diagnose. Our study suggests that EEG is useful in diagnosing ASD by evaluating entropy in the brain. Researchers may be able to develop new diagnostic methods for ASD which focuses on particular stimuli and brainwaves if they conduct more extensive studies with higher numbers and more rigorous study designs.

摘要

神经连接异常与自闭症谱系障碍(ASD)有关。目前尚无办法通过实证来检验神经连接的概念。根据近期的网络理论和时间序列分析结果,脑电图(EEG)能够评估神经网络结构,这是大脑活动的一种表现。本系统综述旨在利用EEG信号评估功能连接性和频谱功率。EEG通过显示描绘脑细胞通过电脉冲进行通信的波浪线来记录个体的大脑活动。EEG可诊断多种脑部疾病,包括癫痫及相关发作性疾病、脑功能障碍、肿瘤和损伤。我们发现有21项研究使用了两种最常见的EEG分析方法:功能连接性和频谱功率。在所有选定的论文中,ASD个体和非ASD个体存在显著差异。由于结果的高度异质性,无法得出一般性结论,目前没有单一方法作为诊断工具是有益的。对于ASD亚型的划分,由于缺乏研究,无法评估这些技术作为诊断工具的情况。这些发现证实了ASD患者EEG存在异常,但不足以用于诊断。我们的研究表明,EEG通过评估大脑中的熵,对诊断ASD是有用的。如果研究人员进行更多数量、更严谨设计的广泛研究,或许能够开发出针对特定刺激和脑电波的ASD新诊断方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d5b6/9968781/1dd9b7599b97/NDT-19-415-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验