Suppr超能文献

用于从胸部 CT 扫描的多中心数据集识别 COVID-19 的稳健框架。

Robust framework for COVID-19 identication from a multicenter dataset of chest CT scans.

机构信息

Concordia Institute for Information Systems Engineering, Concordia University, Montreal, Canada.

Department of Electrical and Computer Engineering, Concordia University, Montreal, QC, Canada.

出版信息

PLoS One. 2023 Mar 2;18(3):e0282121. doi: 10.1371/journal.pone.0282121. eCollection 2023.

Abstract

The main objective of this study is to develop a robust deep learning-based framework to distinguish COVID-19, Community-Acquired Pneumonia (CAP), and Normal cases based on volumetric chest CT scans, which are acquired in different imaging centers using different scanners and technical settings. We demonstrated that while our proposed model is trained on a relatively small dataset acquired from only one imaging center using a specific scanning protocol, it performs well on heterogeneous test sets obtained by multiple scanners using different technical parameters. We also showed that the model can be updated via an unsupervised approach to cope with the data shift between the train and test sets and enhance the robustness of the model upon receiving a new external dataset from a different center. More specifically, we extracted the subset of the test images for which the model generated a confident prediction and used the extracted subset along with the training set to retrain and update the benchmark model (the model trained on the initial train set). Finally, we adopted an ensemble architecture to aggregate the predictions from multiple versions of the model. For initial training and development purposes, an in-house dataset of 171 COVID-19, 60 CAP, and 76 Normal cases was used, which contained volumetric CT scans acquired from one imaging center using a single scanning protocol and standard radiation dose. To evaluate the model, we collected four different test sets retrospectively to investigate the effects of the shifts in the data characteristics on the model's performance. Among the test cases, there were CT scans with similar characteristics as the train set as well as noisy low-dose and ultra-low-dose CT scans. In addition, some test CT scans were obtained from patients with a history of cardiovascular diseases or surgeries. This dataset is referred to as the "SPGC-COVID" dataset. The entire test dataset used in this study contains 51 COVID-19, 28 CAP, and 51 Normal cases. Experimental results indicate that our proposed framework performs well on all test sets achieving total accuracy of 96.15% (95%CI: [91.25-98.74]), COVID-19 sensitivity of 96.08% (95%CI: [86.54-99.5]), CAP sensitivity of 92.86% (95%CI: [76.50-99.19]), Normal sensitivity of 98.04% (95%CI: [89.55-99.95]) while the confidence intervals are obtained using the significance level of 0.05. The obtained AUC values (One class vs Others) are 0.993 (95%CI: [0.977-1]), 0.989 (95%CI: [0.962-1]), and 0.990 (95%CI: [0.971-1]) for COVID-19, CAP, and Normal classes, respectively. The experimental results also demonstrate the capability of the proposed unsupervised enhancement approach in improving the performance and robustness of the model when being evaluated on varied external test sets.

摘要

本研究的主要目的是开发一种稳健的基于深度学习的框架,以便基于容积式胸部 CT 扫描区分 COVID-19、社区获得性肺炎 (CAP) 和正常病例,这些扫描是在不同的成像中心使用不同的扫描仪和技术设置采集的。我们证明了,尽管我们提出的模型是在仅从一个成像中心使用特定扫描协议采集的相对较小的数据集上进行训练的,但它在使用不同技术参数的多个扫描仪获得的异构测试集上表现良好。我们还表明,该模型可以通过一种无监督的方法进行更新,以应对训练集和测试集之间的数据转移,并在接收到来自不同中心的新外部数据集时增强模型的鲁棒性。更具体地说,我们提取了模型生成置信度预测的测试图像子集,并使用提取的子集和训练集重新训练和更新基准模型(基于初始训练集训练的模型)。最后,我们采用了一种集成架构来聚合来自多个版本模型的预测结果。为了进行初始训练和开发,我们使用了一个内部数据集,其中包含 171 例 COVID-19、60 例 CAP 和 76 例正常病例,这些病例包含使用单一扫描协议和标准辐射剂量从一个成像中心采集的容积式 CT 扫描。为了评估模型,我们回顾性地收集了四个不同的测试集,以研究数据特征的变化对模型性能的影响。在测试病例中,既有与训练集具有相似特征的 CT 扫描,也有噪声低剂量和超低剂量 CT 扫描。此外,一些测试 CT 扫描是从有心血管疾病或手术史的患者中采集的。这个数据集被称为“SPGC-COVID”数据集。本研究使用的整个测试数据集包含 51 例 COVID-19、28 例 CAP 和 51 例正常病例。实验结果表明,我们提出的框架在所有测试集上表现良好,总准确率为 96.15%(95%CI:[91.25-98.74]),COVID-19 敏感性为 96.08%(95%CI:[86.54-99.5]),CAP 敏感性为 92.86%(95%CI:[76.50-99.19]),正常敏感性为 98.04%(95%CI:[89.55-99.95]),置信区间是使用 0.05 的显著性水平获得的。获得的 AUC 值(One class vs Others)分别为 0.993(95%CI:[0.977-1])、0.989(95%CI:[0.962-1])和 0.990(95%CI:[0.971-1]),用于 COVID-19、CAP 和正常类别。实验结果还表明,所提出的无监督增强方法在评估不同的外部测试集时,能够提高模型的性能和鲁棒性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eff4/9980818/df018a20449d/pone.0282121.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验