Pritzker School of Molecular Engineering, University of Chicago, 5640 S. Ellis Ave., Chicago, IL 60637, USA.
Pritzker School of Molecular Engineering, University of Chicago, 5640 S. Ellis Ave., Chicago, IL 60637, USA; Department of Chemistry and Biochemistry, Science of Advanced Material, Central Michigan University, Mount Pleasant, MI 48858, United States.
Biomaterials. 2023 May;296:122062. doi: 10.1016/j.biomaterials.2023.122062. Epub 2023 Feb 22.
Neoantigen cancer vaccines that target tumor specific mutations are emerging as a promising modality for cancer immunotherapy. To date, various approaches have been adopted to enhance efficacy of these therapies, but the low immunogenicity of neoantigens has hindered clinical application. To address this challenge, we developed a polymeric nanovaccine platform that activates the NLRP3 inflammasome, a key immunological signaling pathway in pathogen recognition and clearance. The nanovaccine is comprised of a poly (orthoester) scaffold engrafted with a small-molecule TLR7/8 agonist and an endosomal escape peptide that facilitates lysosomal rupture and NLRP3 inflammasome activation. Upon solvent transfer, the polymer self-assembles with neoantigens to form ∼50 nm nanoparticles that facilitate co-delivery to antigen-presenting cells. This polymeric activator of the inflammasome (PAI) was found to induce potent antigen-specific CD8 T cell responses characterized by IFN-γ and GranzymeB secretion. Moreover, in combination with immune checkpoint blockade therapy, the nanovaccine stimulated robust anti-tumor immune responses against established tumors in EG.7-OVA, B16·F10, and CT-26 models. Results from our studies indicate that NLRP3 inflammasome activating nanovaccines demonstrate promise for development as a robust platform to enhance immunogenicity of neoantigen therapies.
针对肿瘤特异性突变的肿瘤新生抗原疫苗作为癌症免疫疗法的一种有前途的方法正在出现。迄今为止,已经采用了各种方法来提高这些疗法的疗效,但新生抗原的低免疫原性阻碍了其临床应用。为了解决这一挑战,我们开发了一种聚合物纳米疫苗平台,该平台激活了 NLRP3 炎性体,这是一种在病原体识别和清除中起关键作用的免疫信号通路。纳米疫苗由聚(原酸酯)支架组成,支架上接枝有小分子 TLR7/8 激动剂和内体逃逸肽,促进溶酶体破裂和 NLRP3 炎性体激活。在溶剂转移后,聚合物与新生抗原自组装形成约 50nm 的纳米颗粒,有利于向抗原呈递细胞共递呈。这种炎性体的聚合物激活剂(PAI)被发现可诱导具有 IFN-γ 和 GranzymeB 分泌特征的强烈的抗原特异性 CD8 T 细胞反应。此外,与免疫检查点阻断疗法联合使用时,该纳米疫苗可刺激 EG.7-OVA、B16·F10 和 CT-26 模型中已建立的肿瘤的强大抗肿瘤免疫反应。我们的研究结果表明,NLRP3 炎性体激活纳米疫苗有希望作为一种增强新生抗原疗法免疫原性的强大平台得到发展。