Suppr超能文献

基于三次草图的稀疏和低秩张量估计

Sparse and Low-rank Tensor Estimation via Cubic Sketchings.

作者信息

Hao Botao, Zhang Anru, Cheng Guang

机构信息

Department of Electrical Engineering, Princeton University, Princeton, NJ 08540.

Department of Statistics, University of Wisconsin-Madison, Madison, WI 53706.

出版信息

IEEE Trans Inf Theory. 2020 Sep;66(9):5927-5964. doi: 10.1109/tit.2020.2982499. Epub 2020 Mar 23.

Abstract

In this paper, we propose a general framework for sparse and low-rank tensor estimation from cubic sketchings. A two-stage non-convex implementation is developed based on sparse tensor decomposition and thresholded gradient descent, which ensures exact recovery in the noiseless case and stable recovery in the noisy case with high probability. The non-asymptotic analysis sheds light on an interplay between optimization error and statistical error. The proposed procedure is shown to be rate-optimal under certain conditions. As a technical by-product, novel high-order concentration inequalities are derived for studying high-moment sub-Gaussian tensors. An interesting tensor formulation illustrates the potential application to high-order interaction pursuit in high-dimensional linear regression.

摘要

在本文中,我们提出了一个用于从三次草图进行稀疏和低秩张量估计的通用框架。基于稀疏张量分解和阈值梯度下降开发了一种两阶段非凸实现方法,该方法确保在无噪声情况下能精确恢复,在有噪声情况下以高概率实现稳定恢复。非渐近分析揭示了优化误差和统计误差之间的相互作用。所提出的过程在某些条件下被证明是速率最优的。作为一个技术副产品,推导出了用于研究高矩次高斯张量的新型高阶集中不等式。一个有趣的张量公式展示了其在高维线性回归中的高阶交互追踪方面的潜在应用。

相似文献

1
Sparse and Low-rank Tensor Estimation via Cubic Sketchings.基于三次草图的稀疏和低秩张量估计
IEEE Trans Inf Theory. 2020 Sep;66(9):5927-5964. doi: 10.1109/tit.2020.2982499. Epub 2020 Mar 23.
3
Noisy Tensor Completion via Low-Rank Tensor Ring.基于低秩张量环的噪声张量补全
IEEE Trans Neural Netw Learn Syst. 2022 Jun 17;PP. doi: 10.1109/TNNLS.2022.3181378.
4
Sparse Reduced Rank Huber Regression in High Dimensions.高维稀疏降秩Huber回归
J Am Stat Assoc. 2023;118(544):2383-2393. doi: 10.1080/01621459.2022.2050243. Epub 2022 Apr 15.
5
Optimal Sparse Singular Value Decomposition for High-Dimensional High-Order Data.高维高阶数据的最优稀疏奇异值分解
J Am Stat Assoc. 2019;114(528):1708-1725. doi: 10.1080/01621459.2018.1527227. Epub 2019 Mar 20.
7
Optimal High-order Tensor SVD via Tensor-Train Orthogonal Iteration.通过张量列正交迭代实现最优高阶张量奇异值分解
IEEE Trans Inf Theory. 2022 Jun;68(6):3991-4019. doi: 10.1109/tit.2022.3152733. Epub 2022 Feb 18.
8
Multiplex Transformed Tensor Decomposition for Multidimensional Image Recovery.多维图像恢复的多元变换张量分解。
IEEE Trans Image Process. 2023;32:3397-3412. doi: 10.1109/TIP.2023.3284673. Epub 2023 Jun 19.
9
Sequential Co-Sparse Factor Regression.序贯协同稀疏因子回归
J Comput Graph Stat. 2017;26(4):814-825. doi: 10.1080/10618600.2017.1340891. Epub 2017 Oct 16.

引用本文的文献

1
Generalized Liquid Association Analysis for Multimodal Data Integration.用于多模态数据集成的广义液体关联分析
J Am Stat Assoc. 2023;118(543):1984-1996. doi: 10.1080/01621459.2021.2024437. Epub 2022 Mar 31.
2
Partially Observed Dynamic Tensor Response Regression.部分观测动态张量响应回归
J Am Stat Assoc. 2023;118(541):424-439. doi: 10.1080/01621459.2021.1938082. Epub 2021 Jul 19.
4
Optimal Sparse Singular Value Decomposition for High-Dimensional High-Order Data.高维高阶数据的最优稀疏奇异值分解
J Am Stat Assoc. 2019;114(528):1708-1725. doi: 10.1080/01621459.2018.1527227. Epub 2019 Mar 20.

本文引用的文献

1
Partially Observed Dynamic Tensor Response Regression.部分观测动态张量响应回归
J Am Stat Assoc. 2023;118(541):424-439. doi: 10.1080/01621459.2021.1938082. Epub 2021 Jul 19.
2
Tucker Tensor Regression and Neuroimaging Analysis.塔克张量回归与神经影像分析
Stat Biosci. 2018 Dec;10(3):520-545. doi: 10.1007/s12561-018-9215-6. Epub 2018 Mar 7.
3
Iterative random forests to discover predictive and stable high-order interactions.迭代随机森林发现预测和稳定的高阶交互。
Proc Natl Acad Sci U S A. 2018 Feb 20;115(8):1943-1948. doi: 10.1073/pnas.1711236115. Epub 2018 Jan 19.
6
A LASSO FOR HIERARCHICAL INTERACTIONS.用于分层交互的套索法
Ann Stat. 2013 Jun;41(3):1111-1141. doi: 10.1214/13-AOS1096.
8
Interaction Screening for Ultra-High Dimensional Data.超高维数据的交互筛选
J Am Stat Assoc. 2014;109(507):1285-1301. doi: 10.1080/01621459.2014.881741.
9
Compressive sensing of sparse tensors.稀疏张量的压缩感知。
IEEE Trans Image Process. 2014 Oct;23(10):4438-47. doi: 10.1109/TIP.2014.2348796. Epub 2014 Aug 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验