Suppr超能文献

贝叶斯网络方法在精神分裂症中的社会和非社会认知研究:某些领域是否比其他领域更基础?

A Bayesian Network Approach to Social and Nonsocial Cognition in Schizophrenia: Are Some Domains More Fundamental than Others?

机构信息

Desert Pacific Mental Illness Research, Education and Clinical Center, Veterans Affairs Greater Los Angeles Healthcare System, CA, USA.

Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA.

出版信息

Schizophr Bull. 2023 Jul 4;49(4):997-1006. doi: 10.1093/schbul/sbad012.

Abstract

OBJECTIVES

Social and nonsocial cognition are defined as distinct yet related constructs. However, the relative independence of individual variables-and whether specific tasks directly depend on performance in other tasks-is still unclear. The current study aimed to answer this question by using a Bayesian network approach to explore directional dependencies among social and nonsocial cognitive domains.

STUDY DESIGN

The study sample comprised 173 participants with schizophrenia (71.7% male; 28.3% female). Participants completed 5 social cognitive tasks and the MATRICS Consensus Cognitive Battery. We estimated Bayesian networks using directed acyclic graph structures to examine directional dependencies among the variables.

STUDY RESULTS

After accounting for negative symptoms and demographic variables, including age and sex, all nonsocial cognitive variables depended on processing speed. More specifically, attention, verbal memory, and reasoning and problem solving solely depended on processing speed, while a causal chain emerged between processing speed and visual memory (processing speed → attention → working memory → visual memory). Social processing variables within social cognition, including emotion in biological motion and empathic accuracy, depended on facial affect identification.

CONCLUSIONS

These results suggest that processing speed and facial affect identification are fundamental domains of nonsocial and social cognition, respectively. We outline how these findings could potentially help guide specific interventions that aim to improve social and nonsocial cognition in people with schizophrenia.

摘要

目的

社会认知和非社会认知被定义为不同但相关的结构。然而,个体变量的相对独立性,以及特定任务是否直接依赖于其他任务的表现,仍然不清楚。本研究旨在通过使用贝叶斯网络方法来探索社会和非社会认知领域之间的定向依赖关系,从而回答这个问题。

研究设计

研究样本包括 173 名精神分裂症患者(71.7%为男性;28.3%为女性)。参与者完成了 5 项社会认知任务和 MATRICS 共识认知电池测试。我们使用有向无环图结构来估计贝叶斯网络,以检查变量之间的定向依赖关系。

研究结果

在考虑了阴性症状和人口统计学变量(包括年龄和性别)后,所有非社会认知变量都依赖于处理速度。更具体地说,注意力、言语记忆、推理和解决问题仅依赖于处理速度,而处理速度和视觉记忆之间存在因果关系(处理速度→注意力→工作记忆→视觉记忆)。社会认知中的社会处理变量,包括生物运动中的情绪和共情准确性,依赖于面部情感识别。

结论

这些结果表明,处理速度和面部情感识别分别是非社会和社会认知的基本领域。我们概述了这些发现如何潜在地帮助指导旨在改善精神分裂症患者社会和非社会认知的具体干预措施。

相似文献

4
Nonsocial cognitive underpinnings of theory of mind in schizophrenia.精神分裂症中社会认知的非社会认知基础。
Psychiatry Res. 2020 Jul;289:113055. doi: 10.1016/j.psychres.2020.113055. Epub 2020 May 15.

引用本文的文献

本文引用的文献

1
Self-relevance and the activation of attentional networks.自我相关性与注意网络的激活。
Q J Exp Psychol (Hove). 2023 May;76(5):1120-1130. doi: 10.1177/17470218221112238. Epub 2022 Jul 24.
2

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验