文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

癌症中的乳酸与乳酸化

Lactate and lactylation in cancer.

作者信息

Chen Jie, Huang Ziyue, Chen Ya, Tian Hao, Chai Peiwei, Shen Yongning, Yao Yiran, Xu Shiqiong, Ge Shengfang, Jia Renbing

机构信息

Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, PR China.

Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, PR China.

出版信息

Signal Transduct Target Ther. 2025 Feb 12;10(1):38. doi: 10.1038/s41392-024-02082-x.


DOI:10.1038/s41392-024-02082-x
PMID:39934144
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11814237/
Abstract

Accumulated evidence has implicated the diverse and substantial influence of lactate on cellular differentiation and fate regulation in physiological and pathological settings, particularly in intricate conditions such as cancer. Specifically, lactate has been demonstrated to be pivotal in molding the tumor microenvironment (TME) through its effects on different cell populations. Within tumor cells, lactate impacts cell signaling pathways, augments the lactate shuttle process, boosts resistance to oxidative stress, and contributes to lactylation. In various cellular populations, the interplay between lactate and immune cells governs processes such as cell differentiation, immune response, immune surveillance, and treatment effectiveness. Furthermore, communication between lactate and stromal/endothelial cells supports basal membrane (BM) remodeling, epithelial-mesenchymal transitions (EMT), metabolic reprogramming, angiogenesis, and drug resistance. Focusing on lactate production and transport, specifically through lactate dehydrogenase (LDH) and monocarboxylate transporters (MCT), has shown promise in the treatment of cancer. Inhibitors targeting LDH and MCT act as both tumor suppressors and enhancers of immunotherapy, leading to a synergistic therapeutic effect when combined with immunotherapy. The review underscores the importance of lactate in tumor progression and provides valuable perspectives on potential therapeutic approaches that target the vulnerability of lactate metabolism, highlighting the Heel of Achilles for cancer treatment.

摘要

越来越多的证据表明,乳酸在生理和病理环境中,尤其是在癌症等复杂情况下,对细胞分化和命运调控具有多样而重大的影响。具体而言,乳酸已被证明通过其对不同细胞群体的作用,在塑造肿瘤微环境(TME)中起着关键作用。在肿瘤细胞内,乳酸影响细胞信号通路,增强乳酸穿梭过程,提高对氧化应激的抵抗力,并促进乳酰化。在各种细胞群体中,乳酸与免疫细胞之间的相互作用控制着细胞分化、免疫反应、免疫监视和治疗效果等过程。此外,乳酸与基质/内皮细胞之间的通讯支持基底膜(BM)重塑、上皮-间质转化(EMT)、代谢重编程、血管生成和耐药性。专注于乳酸的产生和运输,特别是通过乳酸脱氢酶(LDH)和单羧酸转运蛋白(MCT),已显示出在癌症治疗中的前景。靶向LDH和MCT的抑制剂既可以作为肿瘤抑制剂,也可以作为免疫疗法的增强剂,与免疫疗法联合使用时可产生协同治疗效果。这篇综述强调了乳酸在肿瘤进展中的重要性,并为针对乳酸代谢脆弱性的潜在治疗方法提供了有价值的观点,突出了癌症治疗的阿喀琉斯之踵。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/00cc/11814237/5ea0e27224f0/41392_2024_2082_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/00cc/11814237/2c76dd3a1317/41392_2024_2082_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/00cc/11814237/4bc114540d81/41392_2024_2082_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/00cc/11814237/3bf9a0e308d3/41392_2024_2082_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/00cc/11814237/6c1c4cbce88e/41392_2024_2082_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/00cc/11814237/37d4fa886474/41392_2024_2082_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/00cc/11814237/5ea0e27224f0/41392_2024_2082_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/00cc/11814237/2c76dd3a1317/41392_2024_2082_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/00cc/11814237/4bc114540d81/41392_2024_2082_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/00cc/11814237/3bf9a0e308d3/41392_2024_2082_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/00cc/11814237/6c1c4cbce88e/41392_2024_2082_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/00cc/11814237/37d4fa886474/41392_2024_2082_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/00cc/11814237/5ea0e27224f0/41392_2024_2082_Fig6_HTML.jpg

相似文献

[1]
Lactate and lactylation in cancer.

Signal Transduct Target Ther. 2025-2-12

[2]
Lactic acid: The culprit behind the immunosuppressive microenvironment in hepatocellular carcinoma.

Biochim Biophys Acta Rev Cancer. 2024-9

[3]
Lactate and Lactylation: Dual Regulators of T-Cell-Mediated Tumor Immunity and Immunotherapy.

Biomolecules. 2024-12-21

[4]
The oncogenic and clinical implications of lactate induced immunosuppression in the tumour microenvironment.

Cancer Lett. 2021-3-1

[5]
Impact of lactate on immune cell function in the tumor microenvironment: mechanisms and therapeutic perspectives.

Front Immunol. 2025-3-26

[6]
Monocarboxylate transporters in cancer.

Mol Metab. 2019-7-27

[7]
Novel lactylation-related signature to predict prognosis for pancreatic adenocarcinoma.

World J Gastroenterol. 2024-5-21

[8]
Lactate in the tumour microenvironment: From immune modulation to therapy.

EBioMedicine. 2021-11

[9]
Elevated protein lactylation promotes immunosuppressive microenvironment and therapeutic resistance in pancreatic ductal adenocarcinoma.

J Clin Invest. 2025-1-30

[10]
Lactate shuttle: from substance exchange to regulatory mechanism.

Hum Cell. 2022-1

引用本文的文献

[1]
A systematic review of protein post-translational modifications in sepsis.

Mol Biol Rep. 2025-9-3

[2]
Salivary Lactate Dehydrogenase, Matrix Metalloproteinase-9, and Chemerin-The Most Promising Biomarkers for Oral Cancer? A Systematic Review with Meta-Analysis.

Int J Mol Sci. 2025-8-18

[3]
Glioblastoma: From Pathophysiology to Novel Therapeutic Approaches.

Biomedicines. 2025-8-12

[4]
Mitochondrial Transfer Between Cancer and T Cells: Implications for Immune Evasion.

Antioxidants (Basel). 2025-8-18

[5]
Targeting Lactylation: From Metabolic Reprogramming to Precision Therapeutics in Liver Diseases.

Biomolecules. 2025-8-16

[6]
Lactate metabolic reprogramming and histone lactylation modification in sepsis.

Int J Biol Sci. 2025-7-28

[7]
N-butylphthalide (NBP) and ligustrazine (TMP) triazole hybrids target the KEAP1-NRF2 pathway to inhibit ferroptosis and exert brain neuroprotectivity.

Redox Biol. 2025-8-20

[8]
Roles of lactylation in lipid metabolism and related diseases.

Cell Death Discov. 2025-8-23

[9]
A new twist on lactate signaling: alanyl-tRNA synthetases 1 and 2 as metabolic sensors and lactyltransferases.

Mol Biomed. 2025-8-23

[10]
Lactylation: a novel driver of drug resistance in the tumor microenvironment.

Cancer Drug Resist. 2025-8-4

本文引用的文献

[1]
AARS1 and AARS2 sense L-lactate to regulate cGAS as global lysine lactyltransferases.

Nature. 2024-10

[2]
Myc-mediated inhibition of HIF1a degradation promotes M2 macrophage polarization and impairs CD8 T cell function through lactic acid secretion in ovarian cancer.

Int Immunopharmacol. 2024-11-15

[3]
H3K18 Lactylation Potentiates Immune Escape of Non-Small Cell Lung Cancer.

Cancer Res. 2024-11-4

[4]
Glycometabolic reprogramming-induced XRCC1 lactylation confers therapeutic resistance in ALDH1A3-overexpressing glioblastoma.

Cell Metab. 2024-8-6

[5]
Lactylation: Linking the Warburg effect to DNA damage repair.

Cell Metab. 2024-8-6

[6]
The Warburg Effect Revisited through Blood and Electron Flow.

Cancer Res. 2024-7-2

[7]
Lactate/lactylation in ocular development and diseases.

Trends Mol Med. 2024-7-24

[8]
Meta-analysis of [F]FDG-PET/CT in pulmonary sarcoidosis.

Eur Radiol. 2025-4

[9]
Lysine lactylation-based insight to understanding the characterization of cervical cancer.

Biochim Biophys Acta Mol Basis Dis. 2024-10

[10]
Integrated Lactylome Characterization Reveals the Molecular Dynamics of Protein Regulation in Gastrointestinal Cancers.

Adv Sci (Weinh). 2024-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索