Institute of Coastal Environmental Chemistry, Department Inorganic Environmental Chemistry, Helmholtz-Zentrum Hereon, Max-Planck Str. 1, 21502, Geesthacht, Germany.
Anal Bioanal Chem. 2023 Jun;415(15):3041-3049. doi: 10.1007/s00216-023-04611-z. Epub 2023 Mar 4.
This study examines laser microdissection pressure catapulting (LMPC) as an innovative method for microplastic research. Laser pressure catapulting as part of commercially available LMPC microscopes enables the precise handling of microplastic particles without any mechanical contact. In fact, individual particles with sizes between several micrometers and several hundred micrometers can be transported over centimeter-wide distances into a collection vial. Therefore, the technology enables the exact handling of defined numbers of small microplastics (or even individual ones) with the greatest precision. Herewith, it allows the production of particle number-based spike suspensions for method validation. Proof-of-principle LMPC experiments with polyethylene and polyethylene terephthalate model particles in the size range from 20 to 63 µm and polystyrene microspheres (10 µm diameter) demonstrated precise particle handling without fragmentation. Furthermore, the ablated particles showed no evidence of chemical alteration as seen in the particles' IR spectra acquired via laser direct infrared analysis. We propose LMPC as a promising new tool to produce future microplastic reference materials such as particle-number spiked suspensions, since LMPC circumvents the uncertainties resulting from the potentially heterogeneous behavior or inappropriate sampling from microplastic suspensions. Furthermore, LMPC could be advantageous for the generation of very accurate calibration series of spherical particles for microplastic analysis via pyrolysis-gas chromatography-mass spectrometry (down to 0.54 ng), as it omits the dissolution of bulk polymers.
本研究考察了激光微切割压力弹射(LMPC)作为一种用于微塑料研究的创新方法。激光压力弹射作为商用 LMPC 显微镜的一部分,可实现对微塑料颗粒的精确处理,而无需任何机械接触。实际上,尺寸在几微米到几百微米之间的单个颗粒可以在几厘米宽的距离内被运送到收集管中。因此,该技术可以精确处理定义数量的小尺寸微塑料(甚至是单个颗粒),并且具有最高的精度。同时,它允许生产基于颗粒数的加标悬浮液以进行方法验证。通过在 20 至 63 微米尺寸范围内的聚乙烯和聚对苯二甲酸乙二醇酯模型颗粒以及聚苯乙烯微球(10 微米直径)的初步 LMPC 实验证明了无颗粒碎裂的精确颗粒处理。此外,通过激光直接红外分析获得的颗粒红外光谱显示,被烧蚀的颗粒没有任何化学变化的证据。我们提出 LMPC 作为一种有前途的新工具,可以生产未来的微塑料参考材料,例如基于颗粒数的加标悬浮液,因为 LMPC 避免了由于微塑料悬浮液中潜在的不均匀行为或不当采样而产生的不确定性。此外,LMPC 对于通过热解-气相色谱-质谱法(低至 0.54ng)生成非常准确的球形颗粒校准系列也具有优势,因为它省略了聚合物的溶解。