Facultad de Ciencias Naturales, Licenciatura en Microbiología, Universidad Autónoma de Querétaro, Querétaro, Querétaro, 76230, México.
Facultad de Ingeniería, Universidad Autónoma de Querétaro, Querétaro, Querétaro, 76010, México.
Curr Pharm Biotechnol. 2023;24(13):1682-1693. doi: 10.2174/1389201024666230303145653.
The need to combat and reduce the incidence, virulence, and drug resistance of species belonging to genus, has led to the development of new strategies. Nanotechnology, through the implementation of nanomaterials, has emerged as an infallible tool to treat various diseases caused by pathogens, where its mechanisms of action prevent the development of undesirable pharmacological resistance.
The antifungal activity and adjuvant properties of biogenic silver nanoparticles in different species (, and ) are evaluated.
The biogenic metallic nanoparticles were developed by quercetin-mediated biological synthesis. The physicochemical properties were studied by light scattering, electrophoretic mobility, UV-vis and infrared spectroscopy, and transmission electron microscopy. The elucidation of mechanisms of antifungal action was carried out under stress conditions in species at the cell wall and response to oxidative stress.
Small silver nanoparticles (≈ 16.18 nm) with irregular morphology, and negative surface electrical charge (≈ -48.99 mV), were obtained through quercetin-mediated biosynthesis. Infrared spectra showed that the surface of silver nanoparticles is functionalized with the quercetin molecule. The antifungal activity of biogenic nanoparticles had efficacy in the following trend . Biogenic nanoparticles and stressors showed synergistic and potentiated antifungal effects through cell damage, osmotic stress, cell wall damage, and oxidative stress.
Silver nanoparticles synthesized by quercetin-mediated biosynthesis could be implemented as a powerful adjuvant agent to enhance the inhibition effects of diverse compounds over different species.
为了对抗和降低属种的物种的发生率、毒力和耐药性,已经开发出了新的策略。纳米技术通过实施纳米材料,已经成为一种治疗由病原体引起的各种疾病的可靠工具,其作用机制可以防止产生不良的药理耐药性。
评估生物合成银纳米粒子在不同种属(、和)中的抗真菌活性和佐剂特性。
通过槲皮素介导的生物合成来制备生物基金属纳米粒子。通过光散射、电泳迁移率、紫外-可见和红外光谱以及透射电子显微镜研究了其物理化学性质。在细胞壁的胁迫条件下和对氧化应激的反应下,阐明了抗真菌作用的机制。
通过槲皮素介导的生物合成,获得了具有不规则形态和负表面电荷(约-48.99 mV)的小银纳米粒子(约 16.18nm)。红外光谱表明,银纳米粒子的表面被槲皮素分子功能化。生物合成纳米粒子具有抗真菌活性,其效果呈现出如下趋势:。生物合成纳米粒子和胁迫因子通过细胞损伤、渗透胁迫、细胞壁损伤和氧化应激表现出协同和增效的抗真菌作用。
通过槲皮素介导的生物合成合成的银纳米粒子可以作为一种强大的佐剂,增强不同化合物对不同种属的抑制作用。