Kaiser Nico, Song Young-Joon, Vogel Tobias, Piros Eszter, Kim Taewook, Schreyer Philipp, Petzold Stefan, Valentí Roser, Alff Lambert
Advanced Thin Film Technology Division, Institute of Materials Science, TU Darmstadt, Alarich-Weiss-Str. 2, 64287Darmstadt, Germany.
Institute for Theoretical Physics, Goethe-University Frankfurt, Max-von-Laue-Straße 1, 60438Frankfurt am Main, Germany.
ACS Appl Electron Mater. 2023 Jan 26;5(2):754-763. doi: 10.1021/acsaelm.2c01255. eCollection 2023 Feb 28.
Hafnium oxide is an outstanding candidate for next-generation nonvolatile memory solutions such as OxRAM (oxide-based resistive memory) and FeRAM (ferroelectric random access memory). A key parameter for OxRAM is the controlled oxygen deficiency in HfO which eventually is associated with structural changes. Here, we expand the view on the recently identified (semi-)conducting low-temperature pseudocubic phase of reduced hafnium oxide by further X-ray diffraction analysis and density functional theory (DFT) simulation and reveal its rhombohedral nature. By performing total energy and electronic structure calculations, we investigate phase stability and band structure modifications in the presence of oxygen vacancies. With increasing oxygen vacancy concentration, the material transforms from the well-known monoclinic structure to a (pseudocubic) polar rhombohedral -HfO structure. The DFT analysis shows that -HfO is not merely epitaxy-induced but may exist as a relaxed compound. Furthermore, the electronic structure of -HfO as determined by X-ray photoelectron spectroscopy and UV/Vis spectroscopy corresponds very well with the DFT-based prediction of a conducting defect band. The existence of a substoichiometric (semi-)conducting phase of HfO is obviously an important ingredient to understand the mechanism of resistive switching in hafnium-oxide-based OxRAM.
氧化铪是下一代非易失性存储解决方案(如氧化物随机存取存储器(OxRAM)和铁电随机存取存储器(FeRAM))的杰出候选材料。OxRAM的一个关键参数是氧化铪中可控的氧缺陷,这最终与结构变化相关。在这里,我们通过进一步的X射线衍射分析和密度泛函理论(DFT)模拟,扩展了对最近发现的还原氧化铪的(半)导电低温假立方相的认识,并揭示了其菱面体性质。通过进行总能量和电子结构计算,我们研究了氧空位存在下的相稳定性和能带结构变化。随着氧空位浓度的增加,材料从众所周知的单斜结构转变为(假立方)极性菱面体-HfO结构。DFT分析表明,-HfO不仅是外延诱导的,而且可能作为一种弛豫化合物存在。此外,通过X射线光电子能谱和紫外/可见光谱确定的-HfO的电子结构与基于DFT的导电缺陷带预测非常吻合。HfO的亚化学计量(半)导电相的存在显然是理解基于氧化铪的OxRAM中电阻开关机制的重要因素。