Yang Long, Dong Xia, Abuduaini Baiheremujiang, Jiamali Nueraihemaiti, Seyiti Zulihuma, Shan Xue-Feng, Gao Xiao-Ming
College of Pediatrics, Xinjiang Medical University, Ürümqi, China.
Intensive Care Unit, Cardiovascular Center, First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China.
Front Cardiovasc Med. 2023 Feb 16;10:1115463. doi: 10.3389/fcvm.2023.1115463. eCollection 2023.
Ischemic Heart Disease (IHD) is the leading cause of death from cardiovascular disease. Currently, most studies have focused on factors influencing IDH or mortality risk, while few predictive models have been used for mortality risk in IHD patients. In this study, we constructed an effective nomogram prediction model to predict the risk of death in IHD patients by machine learning.
We conducted a retrospective study of 1,663 patients with IHD. The data were divided into training and validation sets in a 3:1 ratio. The least absolute shrinkage and selection operator (LASSO) regression method was used to screen the variables to test the accuracy of the risk prediction model. Data from the training and validation sets were used to calculate receiver operating characteristic (ROC) curves, C-index, calibration plots, and dynamic component analysis (DCA), respectively.
Using LASSO regression, we selected six representative features, age, uric acid, serum total bilirubin, albumin, alkaline phosphatase, and left ventricular ejection fraction, from 31 variables to predict the risk of death at 1, 3, and 5 years in patients with IHD, and constructed the nomogram model. In the reliability of the validated model, the C-index at 1, 3, and 5 years was 0.705 (0.658-0.751), 0.705 (0.671-0.739), and 0.694 (0.656-0.733) for the training set, respectively; the C-index at 1, 3, and 5 years based on the validation set was 0.720 (0.654-0.786), 0.708 (0.650-0.765), and 0.683 (0.613-0.754), respectively. Both the calibration plot and the DCA curve are well-behaved.
Age, uric acid, total serum bilirubin, serum albumin, alkaline phosphatase, and left ventricular ejection fraction were significantly associated with the risk of death in patients with IHD. We constructed a simple nomogram model to predict the risk of death at 1, 3, and 5 years for patients with IHD. Clinicians can use this simple model to assess the prognosis of patients at the time of admission to make better clinical decisions in tertiary prevention of the disease.
缺血性心脏病(IHD)是心血管疾病导致死亡的主要原因。目前,大多数研究集中在影响IHD或死亡风险的因素上,而很少有预测模型用于IHD患者的死亡风险。在本研究中,我们通过机器学习构建了一个有效的列线图预测模型,以预测IHD患者的死亡风险。
我们对1663例IHD患者进行了回顾性研究。数据按3:1的比例分为训练集和验证集。使用最小绝对收缩和选择算子(LASSO)回归方法筛选变量,以检验风险预测模型的准确性。训练集和验证集的数据分别用于计算受试者工作特征(ROC)曲线、C指数、校准图和动态成分分析(DCA)。
使用LASSO回归,我们从31个变量中选择了6个具有代表性的特征,即年龄、尿酸、血清总胆红素、白蛋白、碱性磷酸酶和左心室射血分数,以预测IHD患者1年、3年和5年的死亡风险,并构建了列线图模型。在验证模型的可靠性方面,训练集1年、3年和5年的C指数分别为0.705(0.658 - 0.751)、0.705(0.671 - 0.739)和0.694(0.656 - 0.733);基于验证集1年、3年和5年的C指数分别为0.720(0.654 - 0.786)、0.708(0.650 - 0.765)和0.683(0.613 - 0.754)。校准图和DCA曲线表现良好。
年龄、尿酸、血清总胆红素、血清白蛋白、碱性磷酸酶和左心室射血分数与IHD患者的死亡风险显著相关。我们构建了一个简单的列线图模型,以预测IHD患者1年、3年和5年的死亡风险。临床医生可以使用这个简单的模型在患者入院时评估其预后,以便在该疾病的三级预防中做出更好的临床决策。