文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

膳食ω-3 多不饱和脂肪酸补充或选择性可溶性环氧化物水解酶抑制调节脂类组抑制狼疮易感小鼠粗糙 LPS 加速性肾小球肾炎。

Lipidome modulation by dietary omega-3 polyunsaturated fatty acid supplementation or selective soluble epoxide hydrolase inhibition suppresses rough LPS-accelerated glomerulonephritis in lupus-prone mice.

机构信息

Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States.

Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States.

出版信息

Front Immunol. 2023 Feb 16;14:1124910. doi: 10.3389/fimmu.2023.1124910. eCollection 2023.


DOI:10.3389/fimmu.2023.1124910
PMID:36875087
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9978350/
Abstract

INTRODUCTION: Lipopolysaccharide (LPS)-accelerated autoimmune glomerulonephritis (GN) in NZBWF1 mice is a preclinical model potentially applicable for investigating lipidome-modulating interventions against lupus. LPS can be expressed as one of two chemotypes: smooth LPS (S-LPS) or rough LPS (R-LPS) which is devoid of O-antigen polysaccharide sidechain. Since these chemotypes differentially affect toll-like receptor 4 (TLR4)-mediated immune cell responses, these differences may influence GN induction. METHODS: We initially compared the effects of subchronic intraperitoneal (i.p.) injection for 5 wk with 1) S-LPS, 2) R-LPS, or 3) saline vehicle (VEH) (Study 1) in female NZBWF1 mice. Based on the efficacy of R-LPS in inducing GN, we next used it to compare the impact of two lipidome-modulating interventions, ω-3 polyunsaturated fatty acid (PUFA) supplementation and soluble epoxide hydrolase (sEH) inhibition, on GN (Study 2). Specifically, effects of consuming ω-3 docosahexaenoic acid (DHA) (10 g/kg diet) and/or the sEH inhibitor 1-(4-trifluoro-methoxy-phenyl)-3-(1-propionylpiperidin-4-yl) urea (TPPU) (22.5 mg/kg diet ≈ 3 mg/kg/day) on R-LPS triggering were compared. RESULTS: In Study 1, R-LPS induced robust elevations in blood urea nitrogen, proteinuria, and hematuria that were not evident in VEH- or S-LPS-treated mice. R-LPS-treated mice further exhibited kidney histopathology including robust hypertrophy, hyperplasia, thickened membranes, lymphocytic accumulation containing B and T cells, and glomerular IgG deposition consistent with GN that was not evident in VEH- or SLPS-treated groups. R-LPS but not S-LPS induced spleen enlargement with lymphoid hyperplasia and inflammatory cell recruitment in the liver. In Study 2, resultant blood fatty acid profiles and epoxy fatty acid concentrations reflected the anticipated DHA- and TPPU-mediated lipidome changes, respectively. The relative rank order of R-LPS-induced GN severity among groups fed experimental diets based on proteinuria, hematuria, histopathologic scoring, and glomerular IgG deposition was: VEH/CON< R-LPS/DHA ≈ R-LPS/TPPU<<< R-LPS/TPPU+DHA ≈ R-LPS/CON. In contrast, these interventions had modest-to- negligible effects on R-LPS-induced splenomegaly, plasma antibody responses, liver inflammation, and inflammation-associated kidney gene expression. DISCUSSION: We show for the first time that absence of O-antigenic polysaccharide in R-LPS is critical to accelerated GN in lupus-prone mice. Furthermore, intervention by lipidome modulation through DHA feeding or sEH inhibition suppressed R-LPS-induced GN; however, these ameliorative effects were greatly diminished upon combining the treatments.

摘要

简介:脂多糖 (LPS)-加速的 NZBWF1 小鼠自身免疫性肾小球肾炎 (GN) 是一种临床前模型,可能适用于研究针对狼疮的脂质组调节干预措施。LPS 可以表现为两种化学型之一:光滑 LPS (S-LPS) 或粗糙 LPS (R-LPS),后者缺乏 O-抗原多糖侧链。由于这些化学型会影响 Toll 样受体 4 (TLR4) 介导的免疫细胞反应,因此这些差异可能会影响 GN 的诱导。

方法:我们最初比较了亚慢性腹腔 (i.p.) 注射 5 周的以下三种处理的效果:1) S-LPS,2) R-LPS,或 3) 生理盐水载体 (VEH)(研究 1)在雌性 NZBWF1 小鼠中。基于 R-LPS 在诱导 GN 方面的功效,我们接下来使用它来比较两种脂质组调节干预措施,ω-3 多不饱和脂肪酸 (PUFA) 补充和可溶性环氧化物水解酶 (sEH) 抑制对 GN 的影响(研究 2)。具体来说,比较了食用 ω-3 二十二碳六烯酸 (DHA)(饮食 10 克/千克)和/或 sEH 抑制剂 1-(4-三氟甲氧基-苯基)-3-(1-丙酰基哌啶-4-基)脲 (TPPU)(饮食 22.5 毫克/千克≈3 毫克/天)对 R-LPS 触发的影响。

结果:在研究 1 中,R-LPS 诱导了血液尿素氮、蛋白尿和血尿的显著升高,而 VEH 或 S-LPS 处理的小鼠则没有明显升高。R-LPS 处理的小鼠还表现出肾脏组织病理学改变,包括明显的肥大、增生、增厚的膜、含有 B 和 T 细胞的淋巴细胞积聚,以及肾小球 IgG 沉积,这与 VEH 或 SLPS 处理组没有明显的 GN 一致。R-LPS 但不是 S-LPS 诱导了脾脏肿大、淋巴增生和肝脏中炎症细胞募集。在研究 2 中,预期的 DHA 和 TPPU 介导的脂质组变化分别反映了血液脂肪酸谱和环氧化物脂肪酸浓度的变化。根据蛋白尿、血尿、组织病理学评分和肾小球 IgG 沉积,基于实验饮食的 R-LPS 诱导的 GN 严重程度的相对等级顺序为:VEH/CON<R-LPS/DHA≈R-LPS/TPPU<<<R-LPS/TPPU+DHA≈R-LPS/CON。相比之下,这些干预措施对 R-LPS 诱导的脾肿大、血浆抗体反应、肝脏炎症和与炎症相关的肾脏基因表达只有适度至可忽略的影响。

讨论:我们首次表明,R-LPS 中 O-抗原多糖的缺失对狼疮易感小鼠的加速 GN 至关重要。此外,通过 DHA 喂养或 sEH 抑制进行脂质组调节干预抑制了 R-LPS 诱导的 GN;然而,当联合治疗时,这些改善作用大大减弱。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a31d/9978350/2e2de9bce217/fimmu-14-1124910-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a31d/9978350/42b1c5350d7d/fimmu-14-1124910-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a31d/9978350/5c1c8bd8f6b7/fimmu-14-1124910-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a31d/9978350/715587a01f20/fimmu-14-1124910-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a31d/9978350/1be4c2895f37/fimmu-14-1124910-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a31d/9978350/e3f0a06266d3/fimmu-14-1124910-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a31d/9978350/d7a66dccda55/fimmu-14-1124910-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a31d/9978350/90807465db5d/fimmu-14-1124910-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a31d/9978350/cc2a4aafd256/fimmu-14-1124910-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a31d/9978350/dcb9312464d5/fimmu-14-1124910-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a31d/9978350/166b9705782e/fimmu-14-1124910-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a31d/9978350/5c64dfbf9472/fimmu-14-1124910-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a31d/9978350/2e2de9bce217/fimmu-14-1124910-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a31d/9978350/42b1c5350d7d/fimmu-14-1124910-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a31d/9978350/5c1c8bd8f6b7/fimmu-14-1124910-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a31d/9978350/715587a01f20/fimmu-14-1124910-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a31d/9978350/1be4c2895f37/fimmu-14-1124910-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a31d/9978350/e3f0a06266d3/fimmu-14-1124910-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a31d/9978350/d7a66dccda55/fimmu-14-1124910-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a31d/9978350/90807465db5d/fimmu-14-1124910-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a31d/9978350/cc2a4aafd256/fimmu-14-1124910-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a31d/9978350/dcb9312464d5/fimmu-14-1124910-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a31d/9978350/166b9705782e/fimmu-14-1124910-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a31d/9978350/5c64dfbf9472/fimmu-14-1124910-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a31d/9978350/2e2de9bce217/fimmu-14-1124910-g012.jpg

相似文献

[1]
Lipidome modulation by dietary omega-3 polyunsaturated fatty acid supplementation or selective soluble epoxide hydrolase inhibition suppresses rough LPS-accelerated glomerulonephritis in lupus-prone mice.

Front Immunol. 2023

[2]
Dietary docosahexaenoic acid supplementation inhibits acute pulmonary transcriptional and autoantibody responses to a single crystalline silica exposure in lupus-prone mice.

Front Immunol. 2024

[3]
Dietary Docosahexaenoic Acid Prevents Silica-Induced Development of Pulmonary Ectopic Germinal Centers and Glomerulonephritis in the Lupus-Prone NZBWF1 Mouse.

Front Immunol. 2018-9-12

[4]
Influence of total western diet on docosahexaenoic acid suppression of silica-triggered lupus flaring in NZBWF1 mice.

PLoS One. 2020-5-15

[5]
Omega-3 Polyunsaturated Fatty Acid Intervention Against Established Autoimmunity in a Murine Model of Toxicant-Triggered Lupus.

Front Immunol. 2021

[6]
Silica Induction of Diverse Inflammatory Proteome in Lungs of Lupus-Prone Mice Quelled by Dietary Docosahexaenoic Acid Supplementation.

Front Immunol. 2021

[7]
Crystalline silica-induced pulmonary inflammation and autoimmunity in mature adult NZBW/f1 mice: age-related sensitivity and impact of omega-3 fatty acid intervention.

Inhal Toxicol. 2024-2

[8]
Omega-3 fatty acid intake suppresses induction of diverse autoantibody repertoire by crystalline silica in lupus-prone mice.

Autoimmunity. 2020-11

[9]
Comparative effects of n-3, n-6 and n-9 unsaturated fatty acid-rich diet consumption on lupus nephritis, autoantibody production and CD4+ T cell-related gene responses in the autoimmune NZBWF1 mouse.

PLoS One. 2014-6-19

[10]
Inhibition of Pancreatic Carcinoma Growth Through Enhancing ω-3 Epoxy Polyunsaturated Fatty Acid Profile by Inhibition of Soluble Epoxide Hydrolase.

Anticancer Res. 2019-7

引用本文的文献

[1]
Dietary Polyunsaturated Fatty Acid Deficiency Impairs Renal Lipid Metabolism and Adaptive Response to Proteinuria in Murine Renal Tubules.

Nutrients. 2025-3-10

[2]
Impact of soluble epoxide hydrolase inhibition on silica-induced pulmonary fibrosis, ectopic lymphoid neogenesis, and autoantibody production in lupus-prone mice.

Inhal Toxicol. 2024

[3]
Soluble Epoxide Hydrolase Inhibition Attenuates Proteinuria by Alleviating Renal Inflammation and Podocyte Injuries in Adriamycin-Induced Nephropathy.

Int J Mol Sci. 2024-10-2

[4]
Subchronic intranasal lipopolysaccharide exposure induces pulmonary autoimmunity and glomerulonephritis in NZBWF1 mice.

Autoimmunity. 2024-12

[5]
Regulation of macrophage polarization by targeted metabolic reprogramming for the treatment of lupus nephritis.

Mol Med. 2024-6-25

[6]
Human and Murine Toll-like Receptor-Driven Disease in Systemic Lupus Erythematosus.

Int J Mol Sci. 2024-5-14

[7]
Cytochrome P450 and Epoxide Hydrolase Metabolites in Aβ and tau-induced Neurodegeneration: Insights from .

bioRxiv. 2023-10-2

[8]
Quantitative Profiling Method for Oxylipins in Neurodegenerative Diseases by Liquid Chromatography Coupled with Tandem Mass Spectrometry.

bioRxiv. 2023-10-3

[9]
's Ingredients Improve Control of the Hepatic Lipid Disturbances Derived from a High-Fat Diet.

Foods. 2023-9-4

本文引用的文献

[1]
Single cell analysis of docosahexaenoic acid suppression of sequential LPS-induced proinflammatory and interferon-regulated gene expression in the macrophage.

Front Immunol. 2022

[2]
Fatty Acid and Antioxidant Profile of Eggs from Pasture-Raised Hens Fed a Corn- and Soy-Free Diet and Supplemented with Grass-Fed Beef Suet and Liver.

Foods. 2022-10-28

[3]
The role of organ-deposited IgG in the pathogenesis of multi-organ and tissue damage in systemic lupus erythematosus.

Front Immunol. 2022

[4]
CYP450 Epoxygenase Metabolites, Epoxyeicosatrienoic Acids, as Novel Anti-Inflammatory Mediators.

Molecules. 2022-6-16

[5]
Silica Induction of Diverse Inflammatory Proteome in Lungs of Lupus-Prone Mice Quelled by Dietary Docosahexaenoic Acid Supplementation.

Front Immunol. 2021

[6]
The omega-3 index is inversely associated with the neutrophil-lymphocyte ratio in adults'.

Prostaglandins Leukot Essent Fatty Acids. 2022-2

[7]
The effect of Omega-3 fatty acid supplementation in systemic lupus erythematosus patients: A systematic review.

Lupus. 2022-3

[8]
Inhibition of Soluble Epoxide Hydrolase Attenuates Bosutinib-Induced Blood Pressure Elevation.

Hypertension. 2021-11

[9]
Resolvin D1 Improves the Treg/Th17 Imbalance in Systemic Lupus Erythematosus Through miR-30e-5p.

Front Immunol. 2021

[10]
A Soluble Epoxide Hydrolase Inhibitor, 1-TrifluoromethoxyPhenyl-3-(1-Propionylpiperidin-4-yl) Urea, Ameliorates Experimental Autoimmune Encephalomyelitis.

Int J Mol Sci. 2021-4-28

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索