文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

对二十二碳六烯酸抑制巨噬细胞中顺序脂多糖诱导的促炎和干扰素调节基因表达的单细胞分析。

Single cell analysis of docosahexaenoic acid suppression of sequential LPS-induced proinflammatory and interferon-regulated gene expression in the macrophage.

机构信息

Department of Biochemistry and Molecular Biology, Michigan State University, Lansing, MI, United States.

Institute for Integrative Toxicology, Michigan State University, Lansing, MI, United States.

出版信息

Front Immunol. 2022 Nov 3;13:993614. doi: 10.3389/fimmu.2022.993614. eCollection 2022.


DOI:10.3389/fimmu.2022.993614
PMID:36405730
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9669445/
Abstract

Preclinical and clinical studies suggest that consumption of long chain omega-3 polyunsaturated fatty acids (PUFAs) reduces severity of chronic inflammatory and autoimmune diseases. While these ameliorative effects are conventionally associated with downregulated expression of proinflammatory cytokine and chemokine genes, our laboratory has recently identified Type 1 interferon (IFN1)-regulated gene expression to be another key target of omega-3 PUFAs. Here we used single cell RNA sequencing (scRNAseq) to gain new mechanistic perspectives on how the omega-3 PUFA docosahexaenoic acid (DHA) influences TLR4-driven proinflammatory and IFN1-regulated gene expression in a novel self-renewing murine fetal liver-derived macrophage (FLM) model. FLMs were cultured with 25 µM DHA or vehicle for 24 h, treated with modest concentration of LPS (20 ng/ml) for 1 and 4 h, and then subjected to scRNAseq using the 10X Chromium System. At 0 h (i.e., in the absence of LPS), DHA increased expression of genes associated with the NRF2 antioxidant response (e.g. , ) and metal homeostasis (e.g., ), both of which are consistent with DHA-induced polarization of FLMs to a more anti-inflammatory phenotype. At 1 h post-LPS treatment, DHA inhibited LPS-induced cholesterol synthesis genes (e.g. , , and which potentially could contribute to interference with TLR4-mediated inflammatory signaling. At 4 h post-LPS treatment, LPS-treated FLMs reflected a more robust inflammatory response including upregulation of proinflammatory cytokine (e.g. ) and chemokine (e.g.) genes as well as IFN1-regulated genes (e.g. ), many of which were suppressed by DHA. Using single-cell regulatory network inference and clustering (SCENIC) to identify gene expression networks, we found DHA modestly downregulated LPS-induced expression of NF-κB-target genes. Importantly, LPS induced a subset of FLMs simultaneously expressing NF-κB- and IRF7/STAT1/STAT2-target genes that were conspicuously absent in DHA-pretreated FLMs. Thus, DHA potently targeted both the NF-κB and the IFN1 responses. Altogether, scRNAseq generated a valuable dataset that provides new insights into multiple overlapping mechanisms by which DHA may transcriptionally or post-transcriptionally regulate LPS-induced proinflammatory and IFN1-driven responses in macrophages.

摘要

临床前和临床研究表明,长链 ω-3 多不饱和脂肪酸(PUFA)的消耗可降低慢性炎症和自身免疫性疾病的严重程度。虽然这些改善作用通常与促炎细胞因子和趋化因子基因的下调表达有关,但我们实验室最近发现,I 型干扰素(IFN1)调节的基因表达是 ω-3 PUFAs 的另一个关键靶点。在这里,我们使用单细胞 RNA 测序(scRNAseq)在新型自我更新的胎肝来源巨噬细胞(FLM)模型中获得了关于 ω-3 PUFADHA 如何影响 TLR4 驱动的促炎和 IFN1 调节基因表达的新机制观点。将 FLM 用 25 µM DHA 或载体培养 24 小时,用适度浓度的 LPS(20 ng/ml)处理 1 和 4 小时,然后使用 10X Chromium 系统进行 scRNAseq。在 0 小时(即没有 LPS 的情况下),DHA 增加了与 NRF2 抗氧化反应相关的基因的表达(例如,和 )和金属稳态(例如,),这两者都与 DHA 诱导的 FLM 向更抗炎表型的极化一致。在 LPS 处理后 1 小时,DHA 抑制了 LPS 诱导的胆固醇合成基因(例如,和 ),这可能有助于干扰 TLR4 介导的炎症信号。在 LPS 处理后 4 小时,LPS 处理的 FLM 反映了更强烈的炎症反应,包括促炎细胞因子(例如)和趋化因子(例如)以及 IFN1 调节基因(例如)的上调,其中许多基因被 DHA 抑制。使用单细胞调控网络推断和聚类(SCENIC)来识别基因表达网络,我们发现 DHA 适度地下调了 LPS 诱导的 NF-κB 靶基因的表达。重要的是,LPS 诱导了一小部分 FLM 同时表达 NF-κB 和 IRF7/STAT1/STAT2 靶基因,而在 DHA 预处理的 FLM 中则明显不存在。因此,DHA 强烈靶向 NF-κB 和 IFN1 反应。总的来说,scRNAseq 生成了一个有价值的数据集,提供了新的见解,即 DHA 可能通过转录或转录后调节巨噬细胞中 LPS 诱导的促炎和 IFN1 驱动的反应的多种重叠机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/feaf/9669445/a342bede72e0/fimmu-13-993614-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/feaf/9669445/1c25a604ec28/fimmu-13-993614-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/feaf/9669445/d8a086b60f73/fimmu-13-993614-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/feaf/9669445/9ce09dbc6d19/fimmu-13-993614-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/feaf/9669445/5ed284ef96b3/fimmu-13-993614-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/feaf/9669445/0aca9e70c0be/fimmu-13-993614-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/feaf/9669445/e7ebdaf77e36/fimmu-13-993614-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/feaf/9669445/4acfdb983c1a/fimmu-13-993614-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/feaf/9669445/df8b9755c057/fimmu-13-993614-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/feaf/9669445/6c38ceb4402a/fimmu-13-993614-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/feaf/9669445/6e277329ace6/fimmu-13-993614-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/feaf/9669445/45bb0352baf0/fimmu-13-993614-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/feaf/9669445/a342bede72e0/fimmu-13-993614-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/feaf/9669445/1c25a604ec28/fimmu-13-993614-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/feaf/9669445/d8a086b60f73/fimmu-13-993614-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/feaf/9669445/9ce09dbc6d19/fimmu-13-993614-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/feaf/9669445/5ed284ef96b3/fimmu-13-993614-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/feaf/9669445/0aca9e70c0be/fimmu-13-993614-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/feaf/9669445/e7ebdaf77e36/fimmu-13-993614-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/feaf/9669445/4acfdb983c1a/fimmu-13-993614-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/feaf/9669445/df8b9755c057/fimmu-13-993614-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/feaf/9669445/6c38ceb4402a/fimmu-13-993614-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/feaf/9669445/6e277329ace6/fimmu-13-993614-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/feaf/9669445/45bb0352baf0/fimmu-13-993614-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/feaf/9669445/a342bede72e0/fimmu-13-993614-g012.jpg

相似文献

[1]
Single cell analysis of docosahexaenoic acid suppression of sequential LPS-induced proinflammatory and interferon-regulated gene expression in the macrophage.

Front Immunol. 2022

[2]
Crystalline silica-induced proinflammatory eicosanoid storm in novel alveolar macrophage model quelled by docosahexaenoic acid supplementation.

Front Immunol. 2023

[3]
Docosahexaenoic acid induces an anti-inflammatory profile in lipopolysaccharide-stimulated human THP-1 macrophages more effectively than eicosapentaenoic acid.

J Nutr Biochem. 2007-4

[4]
EPA and DHA reduce LPS-induced inflammation responses in HK-2 cells: evidence for a PPAR-gamma-dependent mechanism.

Kidney Int. 2005-3

[5]
Anti-inflammatory effects of EPA and DHA are dependent upon time and dose-response elements associated with LPS stimulation in THP-1-derived macrophages.

J Nutr Biochem. 2009-5-8

[6]
Docosahexaenoic acid antagonizes the boosting effect of palmitic acid on LPS inflammatory signaling by inhibiting gene transcription and ceramide synthesis.

PLoS One. 2018-2-23

[7]
Omega-3 polyunsaturated fatty acids antagonize macrophage inflammation via activation of AMPK/SIRT1 pathway.

PLoS One. 2012-10-5

[8]
Omega-3 polyunsaturated fatty acids suppress the inflammatory responses of lipopolysaccharide-stimulated mouse microglia by activating SIRT1 pathways.

Biochim Biophys Acta Mol Cell Biol Lipids. 2017-2-22

[9]
Docosahexaenoyl serotonin, an endogenously formed n-3 fatty acid-serotonin conjugate has anti-inflammatory properties by attenuating IL-23-IL-17 signaling in macrophages.

Biochim Biophys Acta. 2016-12

[10]
Docosahexaenoic acid attenuates macrophage-induced inflammation and improves insulin sensitivity in adipocytes-specific differential effects between LC n-3 PUFA.

J Nutr Biochem. 2011-12-1

引用本文的文献

[1]
The Impact of Polyunsaturated Fatty Acids in Cancer and Therapeutic Strategies.

Curr Nutr Rep. 2025-3-14

[2]
Molecular Mechanisms Linking Omega-3 Fatty Acids and the Gut-Brain Axis.

Molecules. 2024-12-28

[3]
Regulation of macrophage polarization by targeted metabolic reprogramming for the treatment of lupus nephritis.

Mol Med. 2024-6-25

[4]
Dietary docosahexaenoic acid supplementation inhibits acute pulmonary transcriptional and autoantibody responses to a single crystalline silica exposure in lupus-prone mice.

Front Immunol. 2024

[5]
Crystalline silica-induced proinflammatory eicosanoid storm in novel alveolar macrophage model quelled by docosahexaenoic acid supplementation.

Front Immunol. 2023

[6]
Lipidome modulation by dietary omega-3 polyunsaturated fatty acid supplementation or selective soluble epoxide hydrolase inhibition suppresses rough LPS-accelerated glomerulonephritis in lupus-prone mice.

Front Immunol. 2023

本文引用的文献

[1]
Fetal Liver-Derived Alveolar-like Macrophages: A Self-Replicating Ex Vivo Model of Alveolar Macrophages for Functional Genetic Studies.

Immunohorizons. 2022-2-22

[2]
Interferon Inhibition for Lupus with Anifrolumab: Critical Appraisal of the Evidence Leading to FDA Approval.

ACR Open Rheumatol. 2022-6

[3]
Type I Interferons in Autoimmunity.

J Invest Dermatol. 2022-3

[4]
Metallothionein 1: A New Spotlight on Inflammatory Diseases.

Front Immunol. 2021

[5]
FDA approves AstraZeneca's anifrolumab for lupus.

Nat Rev Drug Discov. 2021-9

[6]
Dietary Supplementation With Eicosapentaenoic Acid Inhibits Plasma Cell Differentiation and Attenuates Lupus Autoimmunity.

Front Immunol. 2021

[7]
Transcriptomic Analysis of Rat Macrophages.

Front Immunol. 2020

[8]
Docosahexanoic acid signals through the Nrf2-Nqo1 pathway to maintain redox balance and promote neurite outgrowth.

Mol Biol Cell. 2021-4-1

[9]
Membrane cholesterol regulates endocytosis and trafficking of the serotonin receptor: Insights from acute cholesterol depletion.

Biochim Biophys Acta Mol Cell Biol Lipids. 2021-4

[10]
Requisite Omega-3 HUFA Biomarker Thresholds for Preventing Murine Lupus Flaring.

Front Immunol. 2020

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索