Suppr超能文献

STG-Net:一种基于多变量时空信息的新冠病毒预测网络。

STG-Net: A COVID-19 prediction network based on multivariate spatio-temporal information.

作者信息

Song Yucheng, Chen Huaiyi, Song Xiaomeng, Liao Zhifang, Zhang Yan

机构信息

School of Computer Science and Engineering, Central South University, Changsha 410083, China.

Department of Computing, School of Computing, Engineering and Built Environment, Glasgow Caledonian University, Glasgow G4 0BA, UK.

出版信息

Biomed Signal Process Control. 2023 Jul;84:104735. doi: 10.1016/j.bspc.2023.104735. Epub 2023 Feb 24.

Abstract

The modern urban population features a high population density and a fast population flow, and COVID-19 has strong transmission ability, long incubation period, and other characteristics. Considering only the time sequence of COVID-19 transmission cannot effectively respond to the current epidemic transmission situation. The distance between cities and population density information also have a significant impact on the transmission of the virus. Currently, cross-domain transmission prediction models do not fully exploit the time-space information and fluctuation trend of data, and cannot reasonably predict the trend of infectious diseases by integrating time-space multi-source information. To solve this problem, this paper proposes the COVID-19 prediction network (STG-Net) based on multivariate spatio-temporal information, which introduces the Spatial Information Mining module (SIM) and the Temporal Information Mining module (TIM) to mine the spatio-temporal information of the data in a deeper level, and uses the slope feature method to further mine the fluctuation trend of the data. Also, we introduce the Gramian Angular Field module (GAF), which converts one-dimensional data into two-dimensional images, further enhancing the network's feature mining capability in the time and feature dimension, ultimately combining spatiotemporal information to predict daily newly confirmed cases. We tested the network on datasets from China, Australia, the United Kingdom, France, and Netherlands. The experimental results show that STG-Net has better prediction performance than existing prediction models, with an average decision coefficient R2 of 98.23% on the datasets from five countries, as well as good long- and short-term prediction ability and overall good robustness.

摘要

现代城市人口具有高人口密度和快人口流动的特点,而新型冠状病毒肺炎具有传播能力强、潜伏期长等特征。仅考虑新型冠状病毒肺炎传播的时间序列无法有效应对当前的疫情传播形势。城市间距离和人口密度信息对病毒传播也有显著影响。目前,跨域传播预测模型没有充分利用数据的时空信息和波动趋势,无法通过整合时空多源信息合理预测传染病的趋势。为解决这一问题,本文提出基于多变量时空信息的新型冠状病毒肺炎预测网络(STG-Net),引入空间信息挖掘模块(SIM)和时间信息挖掘模块(TIM)对数据的时空信息进行更深入挖掘,并采用斜率特征法进一步挖掘数据的波动趋势。此外,我们引入格拉姆角场模块(GAF),将一维数据转换为二维图像,进一步增强网络在时间和特征维度上的数据挖掘能力,最终结合时空信息预测每日新增确诊病例。我们在中国、澳大利亚、英国、法国和荷兰的数据集上对该网络进行了测试。实验结果表明,STG-Net比现有预测模型具有更好的预测性能,在五个国家的数据集上平均决定系数R2为98.23%,具有良好的长期和短期预测能力以及整体良好的稳健性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9fc/9969838/7a4388fbb731/ga1_lrg.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验