Suppr超能文献

PMSTD-Net:一种用于感知多尺度时空动态的神经预测网络。

PMSTD-Net: A Neural Prediction Network for Perceiving Multi-Scale Spatiotemporal Dynamics.

作者信息

Gao Feng, Li Sen, Ye Yuankang, Liu Chang

机构信息

College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin 150001, China.

Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao 266400, China.

出版信息

Sensors (Basel). 2024 Jul 10;24(14):4467. doi: 10.3390/s24144467.

Abstract

With the continuous advancement of sensing technology, applying large amounts of sensor data to practical prediction processes using artificial intelligence methods has become a developmental direction. In sensing images and remote sensing meteorological data, the dynamic changes in the prediction targets relative to their background information often exhibit more significant dynamic characteristics. Previous prediction methods did not specifically analyze and study the dynamic change information of prediction targets at spatiotemporal multi-scale. Therefore, this paper proposes a neural prediction network based on perceptual multi-scale spatiotemporal dynamic changes (PMSTD-Net). By designing Multi-Scale Space Motion Change Attention Unit (MCAU) to perceive the local situation and spatial displacement dynamic features of prediction targets at different scales, attention is ensured on capturing the dynamic information in their spatial dimensions adequately. On this basis, this paper proposes Multi-Scale Spatiotemporal Evolution Attention (MSEA) unit, which further integrates the spatial change features perceived by MCAU units in higher channel dimensions, and learns the spatiotemporal evolution characteristics at different scales, effectively predicting the dynamic characteristics and regularities of targets in sensor information.Through experiments on spatiotemporal prediction standard datasets such as Moving MNIST, video prediction dataset KTH, and Human3.6m, PMSTD-Net demonstrates prediction performance surpassing previous methods. We construct the GPM satellite remote sensing precipitation dataset, demonstrating the network's advantages in perceiving multi-scale spatiotemporal dynamic changes in remote sensing meteorological data. Finally, through extensive ablation experiments, the performance of each module in PMSTD-Net is thoroughly validated.

摘要

随着传感技术的不断进步,运用人工智能方法将大量传感器数据应用于实际预测过程已成为一个发展方向。在传感图像和遥感气象数据中,预测目标相对于其背景信息的动态变化往往呈现出更为显著的动态特征。以往的预测方法并未针对时空多尺度下预测目标的动态变化信息进行具体分析和研究。因此,本文提出了一种基于感知多尺度时空动态变化的神经预测网络(PMSTD-Net)。通过设计多尺度空间运动变化注意力单元(MCAU)来感知不同尺度下预测目标的局部情况和空间位移动态特征,确保在充分捕捉其空间维度中的动态信息方面给予关注。在此基础上,本文提出了多尺度时空演化注意力(MSEA)单元,它在更高通道维度上进一步整合了MCAU单元感知到的空间变化特征,并学习不同尺度下的时空演化特征,有效预测传感器信息中目标的动态特征和规律。通过在Moving MNIST、视频预测数据集KTH和Human3.6m等时空预测标准数据集上进行实验,PMSTD-Net展示出超越以往方法的预测性能。我们构建了GPM卫星遥感降水数据集,证明了该网络在感知遥感气象数据中多尺度时空动态变化方面的优势。最后,通过广泛的消融实验,对PMSTD-Net中各模块的性能进行了全面验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0809/11280766/2bdcb22ec5e0/sensors-24-04467-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验