Suppr超能文献

耐盐菌的生物膜形成与絮凝潜力分析及其在土壤中的接种以缓解鹰嘴豆的盐胁迫

Biofilm formation and flocculation potential analysis of halotolerant and its inoculation in soil to mitigate salinity stress of chickpea.

作者信息

Haroon Urooj, Munis Muhammad Farooq Hussain, Liaquat Fiza, Khizar Maria, Elahi Minhas, Chaudhary Hassan Javed

机构信息

Quaid-I-Azam University, Islamabad, Pakistan.

Shanghai Jiao Tong University, Shanghai, China.

出版信息

Physiol Mol Biol Plants. 2023 Feb;29(2):277-288. doi: 10.1007/s12298-023-01280-1. Epub 2023 Jan 20.

Abstract

UNLABELLED

Application of beneficial microbes in soil is an important avenue to control plant stresses. In this study, the salinity tolerance of halotolerant bacteria () was investigated and the bacterium was inoculated in the soil to mitigate salinity stress. The results revealed the highest floc yield and biofilm formation ability of at 100 mM NaCl concentration. Fourier transformed infrared spectroscopy depicted the presence of carbohydrates and proteins which binds with sodium ions (Na) and provide tolerance against salinity. Using PCR, plant growth-promoting bacterial genes viz., 1-aminocyclopropane-1-carboxylate deaminase and pyrroloquinoline quinone were successfully amplified from the genome of . In the saline soil, was inoculated and chickpea plants were grown. The bacterial strain improved the physiology, biochemistry, and antioxidant enzyme activities of the chickpea plant under salt stress. Plants inoculated with exhibited higher relative water content, higher photosynthetic pigments, lower levels of hydrogen peroxide (HO) and malondialdehyde, and improved enzymatic activity for the scavenging of reactive oxygen species. The findings of this study suggest the sustainable use of to mitigate the salinity stress of chickpea and other crops. This bacterium not only helps in the alleviation of the toxic effects of salt but also increases plant growth along with a reduction in crop losses due to salinity.

SUPPLEMENTARY INFORMATION

The online version contains supplementary material available at 10.1007/s12298-023-01280-1.

摘要

未标记

在土壤中应用有益微生物是控制植物胁迫的重要途径。在本研究中,对耐盐细菌()的耐盐性进行了研究,并将该细菌接种到土壤中以减轻盐胁迫。结果显示,在100 mM NaCl浓度下,该细菌的絮凝产量和生物膜形成能力最高。傅里叶变换红外光谱显示存在与钠离子(Na)结合并提供耐盐性的碳水化合物和蛋白质。通过PCR,从该细菌的基因组中成功扩增出促进植物生长的细菌基因,即1-氨基环丙烷-1-羧酸脱氨酶和吡咯喹啉醌。在盐碱土中接种该细菌后种植鹰嘴豆植株。该细菌菌株改善了盐胁迫下鹰嘴豆植株的生理、生化和抗氧化酶活性。接种该细菌的植株表现出较高的相对含水量、较高的光合色素含量、较低水平的过氧化氢(HO)和丙二醛,以及清除活性氧的酶活性提高。本研究结果表明可持续利用该细菌来减轻鹰嘴豆和其他作物的盐胁迫。这种细菌不仅有助于减轻盐的毒性作用,还能促进植物生长,同时减少因盐害造成的作物损失。

补充信息

在线版本包含可在10.1007/s12298-023-01280-1获取的补充材料。

相似文献

1
Biofilm formation and flocculation potential analysis of halotolerant and its inoculation in soil to mitigate salinity stress of chickpea.
Physiol Mol Biol Plants. 2023 Feb;29(2):277-288. doi: 10.1007/s12298-023-01280-1. Epub 2023 Jan 20.
5
1-Aminocyclopropane-1-carboxylate (ACC) Deaminase Gene in Is Associated with the Amelioration of Salinity Stress in Tomato.
J Agric Food Chem. 2021 Jan 27;69(3):913-921. doi: 10.1021/acs.jafc.0c05628. Epub 2021 Jan 19.
6
7
ACC deaminase producing plant growth promoting rhizobacteria enhance salinity stress tolerance in .
3 Biotech. 2021 Dec;11(12):514. doi: 10.1007/s13205-021-03047-5. Epub 2021 Nov 29.

引用本文的文献

1
Biofilmed multifarious rhizobacterial isolates of tomato rhizosphere of North-Western Himalayas promote plant growth in tomato.
Front Plant Sci. 2025 Jul 1;16:1610707. doi: 10.3389/fpls.2025.1610707. eCollection 2025.
3
Tetragonal crystalline MnO nanoparticles alleviate Pb stress in wheat by modulating antioxidant enzymes in leaves.
Physiol Mol Biol Plants. 2024 Aug;30(8):1401-1411. doi: 10.1007/s12298-024-01488-9. Epub 2024 Jul 24.
5
Endophyte-mediated enhancement of salt resistance in L. by regulation of osmotic stress and plant defense-related genes.
Front Microbiol. 2024 May 23;15:1383545. doi: 10.3389/fmicb.2024.1383545. eCollection 2024.
6
Endophytic bacilli from Cyamopsis tetragonoloba (L.) Taub. induces plant growth and drought tolerance.
Int Microbiol. 2024 Oct;27(5):1541-1556. doi: 10.1007/s10123-024-00499-6. Epub 2024 Mar 12.
7
Growth and protein response of rice plant with plant growth-promoting rhizobacteria inoculations under salt stress conditions.
Int Microbiol. 2024 Aug;27(4):1151-1168. doi: 10.1007/s10123-023-00469-4. Epub 2024 Jan 3.

本文引用的文献

3
Overexpression of 1-Aminocyclopropane-1-Carboxylic Acid Deaminase () Gene in Improves Tolerance to Abiotic Stresses.
Front Plant Sci. 2021 Nov 2;12:737490. doi: 10.3389/fpls.2021.737490. eCollection 2021.
4
Chickpea ( L.) as a Source of Essential Fatty Acids - A Biofortification Approach.
Front Plant Sci. 2021 Oct 12;12:734980. doi: 10.3389/fpls.2021.734980. eCollection 2021.
7
Characterization of salt-tolerant plant growth-promoting rhizobacteria and the effect on growth and yield of saline-affected rice.
PLoS One. 2020 Sep 4;15(9):e0238537. doi: 10.1371/journal.pone.0238537. eCollection 2020.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验