Suppr超能文献

通过脉冲激光在重塑修饰中超越 TiCT MXene 到 Pt 修饰的 TiO@TiC 核壳,用于加速析氢动力学。

Moving beyond TiCT MXene to Pt-Decorated TiO@TiC Core-Shell via Pulsed Laser in Reshaping Modification for Accelerating Hydrogen Evolution Kinetics.

机构信息

Department of Chemistry (BK21 FOUR), Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea.

Core-Facility Center for Photochemistry & Nanomaterials, Gyeongsang National University, Jinju 52828, Republic of Korea.

出版信息

ACS Nano. 2023 Apr 25;17(8):7539-7549. doi: 10.1021/acsnano.2c12638. Epub 2023 Mar 6.

Abstract

Phase engineering of nanocatalysts on specific facets is critical not only for enhancing catalytic activity but also for intensely understanding the impact of facet-based phase engineering on electrocatalytic reactions. In this study, we successfully reshaped a two-dimensional (2D) MXene (TiCT) obtained by etching TiAlC MAX via a pulsed laser irradiation in liquid (PLIL) process. We produced a TiO@TiC core-shell structure in spheres with sizes of 200-350 nm, and then ∼2 nm ultrasmall Pt NPs were decorated on the surface of the TiO@TiC core-shell using the single-step PLIL method. These advances allow for a significant increase in electrocatalytic hydrogen evolution reaction (HER) activity under visible light illumination. The effect of optimal Pt loading on PLIL time was identified, and the resulting Pt/TiO@TiC/Pt-5 min sample demonstrated outstanding electrochemical and photoelectrochemical performance. The photoelectrochemical HER activity over Pt/TiO@TiC/Pt-5 min catalyst exhibits a low overpotential of 48 mV at 10 mA/cm and an ultralow Tafel slope of 54.03 mV/dec with excellent stability of over 50 h, which is hydrogen production activity even superior to that of the commercial Pt/C catalysts (55 mV, 62.45 mV/dec). This investigation not only serves as a potential for laser-dependent phase engineering but also provides a reliable strategy for the rational design and fabrication of highly effective nanocatalysts.

摘要

纳米催化剂在特定晶面上的相工程不仅对于提高催化活性至关重要,而且对于深入理解基于晶面的相工程对电催化反应的影响也至关重要。在这项研究中,我们通过在液体中使用脉冲激光辐照(PLIL)工艺成功地对 TiAlC MAX 蚀刻得到的二维(2D)MXene(TiCT)进行了重塑。我们制备了具有 200-350nm 尺寸的 TiO@TiC 核壳结构球体,然后使用单步 PLIL 方法在 TiO@TiC 核壳表面上装饰了约 2nm 的 ultrasmall Pt NPs。这些进展使得在可见光照射下电催化析氢反应(HER)活性显著提高。确定了最佳 Pt 负载量对 PLIL 时间的影响,所得的 Pt/TiO@TiC/Pt-5 min 样品表现出出色的电化学和光电化学性能。Pt/TiO@TiC/Pt-5 min 催化剂的光电催化 HER 活性表现出 48 mV 的低过电势,在 10 mA/cm 时的超低 Tafel 斜率为 54.03 mV/dec,具有超过 50 小时的优异稳定性,其产氢活性甚至优于商业 Pt/C 催化剂(55 mV,62.45 mV/dec)。这项研究不仅为激光相关的相工程提供了潜力,而且为高效纳米催化剂的合理设计和制备提供了可靠的策略。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验