Suppr超能文献

虚拟双胞胎方法建模选择的实用指南。

Practical guidance on modeling choices for the virtual twins method.

机构信息

Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN, USA.

Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, MN, USA.

出版信息

J Biopharm Stat. 2023 Sep 3;33(5):653-676. doi: 10.1080/10543406.2023.2170404. Epub 2023 Mar 6.

Abstract

Individuals can vary drastically in their response to the same treatment, and this heterogeneity has driven the push for more personalized medicine. Accurate and interpretable methods to identify subgroups that respond to the treatment differently from the population average are necessary to achieving this goal. The Virtual Twins (VT) method is a highly cited and implemented method for subgroup identification because of its intuitive framework. However, since its initial publication, many researchers still rely heavily on the authors' initial modeling suggestions without examining newer and more powerful alternatives. This leaves much of the potential of the method untapped. We comprehensively evaluate the performance of VT with different combinations of methods in each of its component steps, under a collection of linear and nonlinear problem settings. Our simulations show that the method choice for Step 1 of VT, in which dense models with high predictive performance are fit for the potential outcomes, is highly influential in the overall accuracy of the method, and Superlearner is a promising choice. We illustrate our findings by using VT to identify subgroups with heterogeneous treatment effects in a randomized, double-blind trial of very low nicotine content cigarettes.

摘要

个体对相同治疗的反应可能有很大差异,这种异质性推动了更个性化医疗的发展。为了实现这一目标,有必要采用准确且可解释的方法来识别对治疗的反应与人群平均水平不同的亚组。由于其直观的框架,虚拟双胞胎 (VT) 方法是一种被高度引用和实施的亚组识别方法。然而,自最初发表以来,许多研究人员仍然严重依赖作者最初的建模建议,而没有检查更新和更强大的替代方法。这使得该方法的大部分潜力未被挖掘。我们在一系列线性和非线性问题设置下,全面评估了 VT 在其每个组成步骤中与不同方法组合的性能。我们的模拟结果表明,VT 第一步中方法的选择,即对潜在结果拟合具有高预测性能的密集模型,对该方法的整体准确性有很大影响,而 Superlearner 是一个很有前途的选择。我们通过使用 VT 来识别随机、双盲试验中极低尼古丁含量香烟的治疗效果异质性亚组来说明我们的发现。

相似文献

1
Practical guidance on modeling choices for the virtual twins method.虚拟双胞胎方法建模选择的实用指南。
J Biopharm Stat. 2023 Sep 3;33(5):653-676. doi: 10.1080/10543406.2023.2170404. Epub 2023 Mar 6.
7
Subgroup Identification in Personalized Treatment of Alcohol Dependence.酒精依赖个性化治疗中的亚组识别
Alcohol Clin Exp Res. 2015 Jul;39(7):1253-9. doi: 10.1111/acer.12759. Epub 2015 May 29.
9
The future of Cochrane Neonatal.考克兰新生儿协作网的未来。
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.

本文引用的文献

5
Recursive partitioning for heterogeneous causal effects.异质因果效应的递归划分
Proc Natl Acad Sci U S A. 2016 Jul 5;113(27):7353-60. doi: 10.1073/pnas.1510489113.
10
Reduced nicotine content cigarettes and nicotine patch.低尼古丁含量香烟和尼古丁贴片。
Cancer Epidemiol Biomarkers Prev. 2013 Jun;22(6):1015-24. doi: 10.1158/1055-9965.EPI-12-1439. Epub 2013 Apr 19.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验