Eli Lilly and Company, Indianapolis, IN, USA.
AstraZeneca, Gothenburg, Sweden.
Clin Trials. 2023 Aug;20(4):380-393. doi: 10.1177/17407745231174544. Epub 2023 May 19.
There has been much interest in the evaluation of heterogeneous treatment effects (HTE) and multiple statistical methods have emerged under the heading of personalized/precision medicine combining ideas from hypothesis testing, causal inference, and machine learning over the past 10-15 years. We discuss new ideas and approaches for evaluating HTE in randomized clinical trials and observational studies using the features introduced earlier by Lipkovich, Dmitrienko, and D'Agostino that distinguish principled methods from simplistic approaches to data-driven subgroup identification and estimating individual treatment effects and use a case study to illustrate these approaches. We identified and provided a high-level overview of several classes of modern statistical approaches for personalized/precision medicine, elucidated the underlying principles and challenges, and compared findings for a case study across different methods. Different approaches to evaluating HTEs may produce (and actually produced) highly disparate results when applied to a specific data set. Evaluating HTE with machine learning methods presents special challenges since most of machine learning algorithms are optimized for prediction rather than for estimating causal effects. An additional challenge is in that the output of machine learning methods is typically a "black box" that needs to be transformed into interpretable personalized solutions in order to gain acceptance and usability.
人们对异质治疗效果(HTE)的评估非常感兴趣,在过去的 10-15 年中,结合假设检验、因果推理和机器学习的思想,个性化/精准医学领域出现了许多新的统计方法。我们使用 Lipkovich、Dmitrienko 和 D'Agostino 早些时候提出的特性,讨论了在随机临床试验和观察性研究中评估 HTE 的新想法和方法,这些特性区分了有原则的方法和简单的数据驱动亚组识别和估计个体治疗效果的方法,并使用案例研究来说明这些方法。我们确定并提供了个性化/精准医学领域几种现代统计方法的高级概述,阐明了基本原理和挑战,并对不同方法的案例研究进行了比较。当应用于特定数据集时,不同的 HTE 评估方法可能会产生(实际上已经产生)非常不同的结果。使用机器学习方法评估 HTE 会带来特殊的挑战,因为大多数机器学习算法都是针对预测而不是估计因果效应进行优化的。另一个挑战是,机器学习方法的输出通常是一个“黑盒”,需要将其转换为可解释的个性化解决方案,以便获得认可和可用性。