Suppr超能文献

基于双能 CT 的半自动分割和放射组学:鉴别良恶性肝脏病变的初步研究。

Semiautomatic Segmentation and Radiomics for Dual-Energy CT: A Pilot Study to Differentiate Benign and Malignant Hepatic Lesions.

机构信息

Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 75 Blossom Ct, Rm 248, Boston, MA 02114.

Department of Diagnostic and Therapeutic Radiology, Ramathibodi Hospital, Bangkok, Thailand.

出版信息

AJR Am J Roentgenol. 2020 Aug;215(2):398-405. doi: 10.2214/AJR.19.22164. Epub 2020 May 14.

Abstract

This study assessed a machine learning-based dual-energy CT (DECT) tumor analysis prototype for semiautomatic segmentation and radiomic analysis of benign and malignant liver lesions seen on contrast-enhanced DECT. This institutional review board-approved study included 103 adult patients (mean age, 65 ± 15 [SD] years; 53 men, 50 women) with benign (60/103) or malignant (43/103) hepatic lesions on contrast-enhanced dual-source DECT. Most malignant lesions were histologically proven; benign lesions were either stable on follow-up CT or had characteristic benign features on MRI. Low- and high-kilovoltage datasets were deidentified, exported offline, and processed with the DECT tumor analysis for semiautomatic segmentation of the volume and rim of each liver lesion. For each segmentation, contrast enhancement and iodine concentrations as well as radiomic features were derived for different DECT image series. Statistical analyses were performed to determine if DECT tumor analysis and radiomics can differentiate benign from malignant liver lesions. Normalized iodine concentration and mean iodine concentration in the benign and malignant lesions were significantly different ( < 0.0001-0.0084; AUC, 0.695-0.856). Iodine quantification and radiomic features from lesion rims (AUC, ≤ 0.877) had higher accuracy for differentiating liver lesions compared with the values from lesion volumes (AUC, ≤ 0.856). There was no difference in the accuracies of DECT iodine quantification (AUC, 0.91) and radiomics (AUC, 0.90) for characterizing liver lesions. DECT radiomics were more accurate than iodine quantification for differentiating solid benign and malignant hepatic lesions.

摘要

本研究评估了一种基于机器学习的双能 CT(DECT)肿瘤分析原型,用于对增强 DECT 上所见的良性和恶性肝病变进行半自动分割和放射组学分析。这项经机构审查委员会批准的研究纳入了 103 例成人患者(平均年龄 65±15[SD]岁;53 名男性,50 名女性),这些患者的肝内病变在增强双源 DECT 上表现为良性(60/103)或恶性(43/103)。大多数恶性病变经组织学证实;良性病变在 CT 随访中稳定或在 MRI 上具有特征性良性特征。低千伏和高千伏数据集被匿名化,离线导出,并通过 DECT 肿瘤分析进行处理,以对每个肝病变的体积和边缘进行半自动分割。对于每个分割,从不同的 DECT 图像序列中得出了对比增强和碘浓度以及放射组学特征。进行了统计学分析,以确定 DECT 肿瘤分析和放射组学是否可以区分良性和恶性肝病变。良性和恶性病变中的标准化碘浓度和平均碘浓度差异具有统计学意义(<0.0001-0.0084;AUC,0.695-0.856)。与病变体积相比,病变边缘的碘定量和放射组学特征(AUC,≤0.877)对区分肝病变的准确性更高(AUC,≤0.856)。DECT 碘定量(AUC,0.91)和放射组学(AUC,0.90)用于特征描述肝病变的准确性无差异。DECT 放射组学在区分实性良性和恶性肝病变方面比碘定量更准确。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验