School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China.
Jiangsu Key Laboratory of Anaerobic Biotechnology, Wuxi, 214122, China.
World J Microbiol Biotechnol. 2023 Mar 7;39(5):109. doi: 10.1007/s11274-023-03554-y.
As important components of enzymes and coenzymes involved in energy transfer and Wood-Ljungdahl (WL) pathways, Fe and Ni supplementation may promote the acetate synthesis through CO reduction by the microbial electrosynthesis (MES). However, the effect of Fe and Ni addition on acetate production in MES and corresponding microbial mechanisms have not been fully studied. Therefore, this study investigated the effect of Fe and Ni addition on acetate production in MES, and explored the underlying microbial mechanism from the metatranscriptomic perspective. Both Fe and Ni addition enhanced acetate production of the MES, which was 76.9% and 110.9% higher than that of control, respectively. Little effect on phylum level and small changes in genus-level microbial composition was caused by Fe and Ni addition. Gene expression of 'Energy metabolism', especially in 'Carbon fixation pathways in prokaryotes' was up-regulated by Fe and Ni addition. Hydrogenase was found as an important energy transfer mediator for CO reduction and acetate synthesis. Fe addition and Ni addition respectively enhanced the expression of methyl branch and carboxyl branch of the WL pathway, and thus promoted acetate production. The study provided a metatranscriptomic insight into the effect of Fe and Ni on acetate production by CO reduction in MES.
作为涉及能量转移和 Wood-Ljungdahl(WL)途径的酶和辅酶的重要组成部分,Fe 和 Ni 的补充可能通过微生物电合成(MES)中的 CO 还原促进乙酸盐的合成。然而,Fe 和 Ni 的添加对 MES 中乙酸盐生产的影响以及相应的微生物机制尚未得到充分研究。因此,本研究考察了 Fe 和 Ni 添加对 MES 中乙酸盐生产的影响,并从宏转录组学的角度探讨了潜在的微生物机制。Fe 和 Ni 的添加均增强了 MES 的乙酸盐生产,分别比对照提高了 76.9%和 110.9%。Fe 和 Ni 的添加对门水平几乎没有影响,对属水平微生物组成的变化也很小。Fe 和 Ni 的添加上调了“能量代谢”的基因表达,特别是“原核生物中的碳固定途径”。氢酶被发现是 CO 还原和乙酸盐合成中重要的能量转移介质。Fe 添加和 Ni 添加分别增强了 WL 途径的甲基分支和羧基分支的表达,从而促进了乙酸盐的生产。该研究为 Fe 和 Ni 对 MES 中 CO 还原产生乙酸盐的影响提供了宏转录组学的见解。