Suppr超能文献

基于混合遗传算法的脑电信号 IC 地形图聚类分析

Hybrid Genetic Algorithm for Clustering IC Topographies of EEGs.

机构信息

Dpto. Ingeniería de Comunicaciones, Universidad de Málaga, Campus de Teatinos, 29071, Málaga, Málaga, Spain.

Dpto. Psicología Evolutiva y Educación, Universidad de Málaga, Campus de Teatinos, 29071, Málaga, Málaga, Spain.

出版信息

Brain Topogr. 2023 May;36(3):338-349. doi: 10.1007/s10548-023-00947-y. Epub 2023 Mar 7.

Abstract

Clustering of independent component (IC) topographies of Electroencephalograms (EEG) is an effective way to find brain-generated IC processes associated with a population of interest, particularly for those cases where event-related potential features are not available. This paper proposes a novel algorithm for the clustering of these IC topographies and compares its results with the most currently used clustering algorithms. In this study, 32-electrode EEG signals were recorded at a sampling rate of 500 Hz for 48 participants. EEG signals were pre-processed and IC topographies computed using the AMICA algorithm. The algorithm implements a hybrid approach where genetic algorithms are used to compute more accurate versions of the centroids and the final clusters after a pre-clustering phase based on spectral clustering. The algorithm automatically selects the optimum number of clusters by using a fitness function that involves local-density along with compactness and separation criteria. Specific internal validation metrics adapted to the use of the absolute correlation coefficient as the similarity measure are defined for the benchmarking process. Assessed results across different ICA decompositions and groups of subjects show that the proposed clustering algorithm significantly outperforms the (baseline) clustering algorithms provided by the software EEGLAB, including CORRMAP.

摘要

脑电信号(EEG)独立成分(IC)拓扑图的聚类是一种发现与感兴趣人群相关的大脑生成 IC 过程的有效方法,特别是对于那些没有事件相关电位特征的情况。本文提出了一种新的聚类算法,并将其结果与当前使用的最常用聚类算法进行了比较。在这项研究中,对 48 名参与者以 500Hz 的采样率记录了 32 电极 EEG 信号。使用 AMICA 算法对 EEG 信号进行预处理和 IC 拓扑计算。该算法实现了一种混合方法,其中遗传算法用于计算基于谱聚类的预聚类阶段之后的质心和最终聚类的更准确版本。该算法通过使用涉及局部密度以及紧密度和分离标准的适应度函数自动选择最佳的聚类数量。为基准测试过程定义了适用于绝对相关系数作为相似性度量的特定内部验证指标。在不同的 ICA 分解和受试者组上评估的结果表明,所提出的聚类算法显著优于 EEGLAB 软件提供的(基线)聚类算法,包括 CORRMAP。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3f03/10164025/4118c740ee35/10548_2023_947_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验