Suppr超能文献

使用深度学习模型和神经影像学自动检测阿尔茨海默病:当前趋势与未来展望

Automatic Detection of Alzheimer's Disease using Deep Learning Models and Neuro-Imaging: Current Trends and Future Perspectives.

作者信息

Illakiya T, Karthik R

机构信息

School of Computer Science and Engineering, Vellore Institute of Technology, Chennai, India.

Centre for Cyber Physical Systems, School of Electronics Engineering, Vellore Institute of Technology, Chennai, India.

出版信息

Neuroinformatics. 2023 Apr;21(2):339-364. doi: 10.1007/s12021-023-09625-7. Epub 2023 Mar 8.

Abstract

Deep learning algorithms have a huge influence on tackling research issues in the field of medical image processing. It acts as a vital aid for the radiologists in producing accurate results toward effective disease diagnosis. The objective of this research is to highlight the importance of deep learning models in the detection of Alzheimer's Disease (AD). The main objective of this research is to analyze different deep learning methods used for detecting AD. This study examines 103 research articles published in various research databases. These articles have been selected based on specific criteria to find the most relevant findings in the field of AD detection. The review was carried out based on deep learning techniques such as Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), and Transfer Learning (TL). To propose accurate methods for the detection, segmentation, and severity grading of AD, the radiological features need to be examined in greater depth. This review attempts to analyze different deep learning methods applied for AD detection using neuroimaging modalities like Positron Emission Tomography (PET), Magnetic Resonance Imaging (MRI), etc. The focus of this review is restricted to deep learning works based on radiological imaging data for AD detection. There are a few works that have utilized other biomarkers to understand the effect of AD. Also, articles published in English were alone considered for analysis. This work concludes by highlighting the key research issues towards effective AD detection. Though several methods have yielded promising results in AD detection, the progression from Mild Cognitive Impairment (MCI) to AD need to be analyzed in greater depth using DL models.

摘要

深度学习算法对解决医学图像处理领域的研究问题有着巨大影响。它在帮助放射科医生得出准确结果以实现有效疾病诊断方面发挥着至关重要的作用。本研究的目的是突出深度学习模型在阿尔茨海默病(AD)检测中的重要性。本研究的主要目的是分析用于检测AD的不同深度学习方法。本研究考察了在各种研究数据库中发表的103篇研究文章。这些文章是根据特定标准挑选出来的,以便在AD检测领域找到最相关的研究结果。该综述基于卷积神经网络(CNN)、循环神经网络(RNN)和迁移学习(TL)等深度学习技术进行。为了提出用于AD检测、分割和严重程度分级的准确方法,需要更深入地研究放射学特征。本综述试图分析使用正电子发射断层扫描(PET)、磁共振成像(MRI)等神经成像模态用于AD检测的不同深度学习方法。本综述的重点仅限于基于放射学成像数据进行AD检测的深度学习研究。有一些研究利用了其他生物标志物来了解AD的影响。此外,仅考虑分析用英文发表的文章。本研究通过突出有效AD检测的关键研究问题得出结论。尽管有几种方法在AD检测中取得了有希望的结果,但仍需要使用深度学习模型更深入地分析从轻度认知障碍(MCI)到AD的进展情况。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验