Suppr超能文献

理解和工程化具有金属负极的固态电池中的界面黏附。

Understanding and Engineering Interfacial Adhesion in Solid-State Batteries with Metallic Anodes.

机构信息

Department of Materials, Imperial College London, Exhibition Road, SW7 2AZ, London, UK.

Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, 28049, Madrid, Spain.

出版信息

ChemSusChem. 2023 Jun 22;16(12):e202202215. doi: 10.1002/cssc.202202215. Epub 2023 Apr 19.

Abstract

High performance alkali metal anode solid-state batteries require solid/solid interfaces with fast ion transfer that are morphologically and chemically stable upon electrochemical cycling. Void formation at the alkali metal/solid-state electrolyte interface during alkali metal stripping is responsible for constriction resistances and hotspots that can facilitate dendrite propagation and failure. Both externally applied pressures (35-400 MPa) and temperatures above the melting point of the alkali metal have been shown to improve the interfacial contact with the solid electrolyte, preventing the formation of voids. However, the extreme pressure and temperature conditions required can be difficult to meet for commercial solid-state battery applications. In this review, we highlight the importance of interfacial adhesion or 'wetting' at alkali metal/solid electrolyte interfaces for achieving solid-state batteries that can withstand high current densities without cell failure. The intrinsically poor adhesion at metal/ceramic interfaces poses fundamental limitations on many inorganics solid-state electrolyte systems in the absence of applied pressure. Suppression of alkali metal voids can only be achieved for systems with high interfacial adhesion (i. e. 'perfect wetting') where the contact angle between the alkali metal and the solid-state electrolyte surface goes to θ=0°. We identify key strategies to improve interfacial adhesion and suppress void formation including the adoption of interlayers, alloy anodes and 3D scaffolds. Computational modeling techniques have been invaluable for understanding the structure, stability and adhesion of solid-state battery interfaces and we provide an overview of key techniques. Although focused on alkali metal solid-state batteries, the fundamental understanding of interfacial adhesion discussed in this review has broader applications across the field of chemistry and material science from corrosion to biomaterials development.

摘要

高性能碱金属阳极全固态电池需要具有快速离子传输能力的固/固界面,并且在电化学循环过程中具有形态和化学稳定性。在碱金属剥离过程中,碱金属/固态电解质界面处的空隙形成会导致收缩电阻和热点的形成,从而促进枝晶的生长和失效。已经证明,外部施加的压力(35-400 MPa)和高于碱金属熔点的温度可以改善与固体电解质的界面接触,防止空隙的形成。然而,对于商业全固态电池应用而言,所需的极端压力和温度条件可能难以满足。在这篇综述中,我们强调了在实现能够承受高电流密度而不发生电池故障的全固态电池时,碱金属/固态电解质界面的界面粘附或“润湿性”的重要性。在没有施加压力的情况下,金属/陶瓷界面固有的不良粘附对许多无机全固态电解质系统构成了根本限制。只有在具有高界面粘附力(即“完美润湿”)的系统中,才能抑制碱金属空隙的形成,其中碱金属与固态电解质表面之间的接触角θ趋近于 0°。我们确定了改善界面粘附和抑制空隙形成的关键策略,包括采用中间层、合金阳极和 3D 支架。计算建模技术对于理解全固态电池界面的结构、稳定性和粘附性非常有价值,我们提供了关键技术的概述。尽管本文重点介绍了碱金属全固态电池,但所讨论的界面粘附的基本原理在化学和材料科学领域具有更广泛的应用,从腐蚀到生物材料开发都有涉及。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc76/10962603/eac9c6ec782c/CSSC-16-0-g009.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验