Suppr超能文献

可靠压力识别策略:基于心率变异性特征的机器学习方法。

Strategies for Reliable Stress Recognition: A Machine Learning Approach Using Heart Rate Variability Features.

机构信息

College of Science and Engineering, Hamad Bin Khalifa University, Doha P.O. Box 34110, Qatar.

School of Electronic Engineering and Computer Science, Queen Mary University of London, London E1 4NS, UK.

出版信息

Sensors (Basel). 2024 May 18;24(10):3210. doi: 10.3390/s24103210.

Abstract

Stress recognition, particularly using machine learning (ML) with physiological data such as heart rate variability (HRV), holds promise for mental health interventions. However, limited datasets in affective computing and healthcare research can lead to inaccurate conclusions regarding the ML model performance. This study employed supervised learning algorithms to classify stress and relaxation states using HRV measures. To account for limitations associated with small datasets, robust strategies were implemented based on methodological recommendations for ML with a limited dataset, including data segmentation, feature selection, and model evaluation. Our findings highlight that the random forest model achieved the best performance in distinguishing stress from non-stress states. Notably, it showed higher performance in identifying stress from relaxation (F1-score: 86.3%) compared to neutral states (F1-score: 65.8%). Additionally, the model demonstrated generalizability when tested on independent secondary datasets, showcasing its ability to distinguish between stress and relaxation states. While our performance metrics might be lower than some previous studies, this likely reflects our focus on robust methodologies to enhance the generalizability and interpretability of ML models, which are crucial for real-world applications with limited datasets.

摘要

压力识别,特别是使用机器学习 (ML) 结合心率变异性 (HRV) 等生理数据,为心理健康干预提供了前景。然而,情感计算和医疗保健研究中的有限数据集可能导致对 ML 模型性能的不准确结论。本研究采用监督学习算法,使用 HRV 指标对压力和放松状态进行分类。为了解决与小数据集相关的限制,我们根据针对有限数据集的 ML 方法建议实施了稳健策略,包括数据分段、特征选择和模型评估。我们的研究结果表明,随机森林模型在区分压力和非压力状态方面表现最佳。值得注意的是,它在识别放松状态下的压力(F1 得分:86.3%)方面的表现优于中性状态(F1 得分:65.8%)。此外,该模型在独立的二次数据集上进行测试时表现出了泛化能力,展示了其区分压力和放松状态的能力。虽然我们的性能指标可能低于一些先前的研究,但这可能反映了我们对增强 ML 模型的泛化能力和可解释性的稳健方法的关注,这对于具有有限数据集的现实世界应用至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a98/11126126/f42bb87aeafe/sensors-24-03210-g0A1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验