Department of Medicine, Division of Cardiology, University of California, San Francisco, San Francisco, CA 94143, USA; Gladstone Institutes, San Francisco, CA 94158, USA.
Gladstone Institutes, San Francisco, CA 94158, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA.
Mol Cell. 2023 Mar 16;83(6):942-960.e9. doi: 10.1016/j.molcel.2023.02.013. Epub 2023 Mar 8.
Oxygen is toxic across all three domains of life. Yet, the underlying molecular mechanisms remain largely unknown. Here, we systematically investigate the major cellular pathways affected by excess molecular oxygen. We find that hyperoxia destabilizes a specific subset of Fe-S cluster (ISC)-containing proteins, resulting in impaired diphthamide synthesis, purine metabolism, nucleotide excision repair, and electron transport chain (ETC) function. Our findings translate to primary human lung cells and a mouse model of pulmonary oxygen toxicity. We demonstrate that the ETC is the most vulnerable to damage, resulting in decreased mitochondrial oxygen consumption. This leads to further tissue hyperoxia and cyclic damage of the additional ISC-containing pathways. In support of this model, primary ETC dysfunction in the Ndufs4 KO mouse model causes lung tissue hyperoxia and dramatically increases sensitivity to hyperoxia-mediated ISC damage. This work has important implications for hyperoxia pathologies, including bronchopulmonary dysplasia, ischemia-reperfusion injury, aging, and mitochondrial disorders.
氧气在所有三个生命领域都是有毒的。然而,其潜在的分子机制在很大程度上仍是未知的。在这里,我们系统地研究了受过量分子氧影响的主要细胞途径。我们发现,高氧会使特定的 Fe-S 簇 (ISC) 包含蛋白不稳定,导致二氢叶酸合成、嘌呤代谢、核苷酸切除修复和电子传递链 (ETC) 功能受损。我们的发现适用于原代人肺细胞和肺氧毒性的小鼠模型。我们证明 ETC 最容易受到损伤,导致线粒体耗氧量减少。这会导致进一步的组织高氧和其他包含 ISC 的途径的循环损伤。支持这一模型,Ndufs4 KO 小鼠模型中的原发性 ETC 功能障碍导致肺组织高氧,并显著增加对高氧介导的 ISC 损伤的敏感性。这项工作对高氧病理有重要意义,包括支气管肺发育不良、缺血再灌注损伤、衰老和线粒体疾病。