Howard Hughes Medical Institute, Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Broad Institute, Cambridge, MA 02142, USA.
Howard Hughes Medical Institute, Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Broad Institute, Cambridge, MA 02142, USA.
Cell. 2020 Apr 30;181(3):716-727.e11. doi: 10.1016/j.cell.2020.03.029. Epub 2020 Apr 6.
Human cells are able to sense and adapt to variations in oxygen levels. Historically, much research in this field has focused on hypoxia-inducible factor (HIF) signaling and reactive oxygen species (ROS). Here, we perform genome-wide CRISPR growth screens at 21%, 5%, and 1% oxygen to systematically identify gene knockouts with relative fitness defects in high oxygen (213 genes) or low oxygen (109 genes), most without known connection to HIF or ROS. Knockouts of many mitochondrial pathways thought to be essential, including complex I and enzymes in Fe-S biosynthesis, grow relatively well at low oxygen and thus are buffered by hypoxia. In contrast, in certain cell types, knockout of lipid biosynthetic and peroxisomal genes causes fitness defects only in low oxygen. Our resource nominates genetic diseases whose severity may be modulated by oxygen and links hundreds of genes to oxygen homeostasis.
人类细胞能够感知并适应氧气水平的变化。在该领域的历史研究中,缺氧诱导因子 (HIF) 信号和活性氧 (ROS) 一直是研究重点。在这里,我们在 21%、5%和 1%的氧气下进行全基因组 CRISPR 生长筛选,以系统地识别在高氧 (213 个基因) 或低氧 (109 个基因) 中相对适应不良的基因敲除体,其中大多数与 HIF 或 ROS 没有已知联系。许多被认为是必需的线粒体途径的敲除体,包括复合物 I 和 Fe-S 生物合成中的酶,在低氧条件下生长得相对较好,因此受到缺氧的缓冲。相比之下,在某些细胞类型中,脂质生物合成和过氧化物酶体基因的敲除仅在低氧条件下导致适应性缺陷。我们的资源提名了可能受氧气调节严重程度的遗传疾病,并将数百个基因与氧气稳态联系起来。