Unit of Otorhinolaryngology - Head and Neck Surgery, Department of Surgical and Medical Specialties, Radiological Sciences, and Public Health, School of Medicine, ASST Spedali Civili, University of Brescia, Brescia, Italy.
Otorhinolaryngology Unit, IRCCS Humanitas Research Hospital, Milano, Italy.
Eur Arch Otorhinolaryngol. 2024 Nov;281(11):5815-5821. doi: 10.1007/s00405-024-08809-4. Epub 2024 Jul 13.
Accurate diagnosis and quantification of polyps and symptoms are pivotal for planning the therapeutic strategy of Chronic rhinosinusitis with nasal polyposis (CRSwNP). This pilot study aimed to develop an artificial intelligence (AI)-based image analysis system capable of segmenting nasal polyps from nasal endoscopy videos.
Recorded nasal videoendoscopies from 52 patients diagnosed with CRSwNP between 2019 and 2022 were retrospectively analyzed. Images extracted were manually segmented on the web application Roboflow. A dataset of 342 images was generated and divided into training (80%), validation (10%), and testing (10%) sets. The Ultralytics YOLOv8.0.28 model was employed for automated segmentation.
The YOLOv8s-seg model consisted of 195 layers and required 42.4 GFLOPs for operation. When tested against the validation set, the algorithm achieved a precision of 0.91, recall of 0.839, and mean average precision at 50% IoU (mAP50) of 0.949. For the segmentation task, similar metrics were observed, including a mAP ranging from 0.675 to 0.679 for IoUs between 50% and 95%.
The study shows that a carefully trained AI algorithm can effectively identify and delineate nasal polyps in patients with CRSwNP. Despite certain limitations like the focus on CRSwNP-specific samples, the algorithm presents a promising complementary tool to existing diagnostic methods.
准确诊断和量化息肉和症状对于规划伴有鼻息肉的慢性鼻-鼻窦炎(CRSwNP)的治疗策略至关重要。本研究旨在开发一种基于人工智能(AI)的图像分析系统,能够从鼻内窥镜视频中分割鼻息肉。
回顾性分析了 2019 年至 2022 年间 52 例确诊为 CRSwNP 的患者的鼻视频内窥镜记录。在 Roboflow 网络应用程序上手动分割提取的图像。生成了 342 张图像数据集,并分为训练集(80%)、验证集(10%)和测试集(10%)。使用 Ultralytics YOLOv8.0.28 模型进行自动分割。
YOLOv8s-seg 模型由 195 层组成,运行需要 42.4 GFLOPs。在验证集上进行测试时,该算法的精度为 0.91,召回率为 0.839,50% IoU 下的平均精度(mAP50)为 0.949。对于分割任务,观察到类似的指标,包括在 50%到 95%的 IoU 之间,mAP 范围为 0.675 到 0.679。
该研究表明,经过精心训练的 AI 算法可以有效地识别和描绘 CRSwNP 患者的鼻息肉。尽管存在一些局限性,例如专注于 CRSwNP 特定样本,但该算法为现有的诊断方法提供了一种很有前途的补充工具。