Madhu Anandu Kalleri, Melnikov Alexey A, Fedichkin Leonid E, Alodjants Alexander P, Lee Ray-Kuang
Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan.
Valiev Institute of Physics and Technology, Russian Academy of Sciences, 117218 Moscow, Russia.
Heliyon. 2023 Feb 8;9(3):e13416. doi: 10.1016/j.heliyon.2023.e13416. eCollection 2023 Mar.
Simulation and programming of current quantum computers as Noisy Intermediate-Scale Quantum (NISQ) devices represent a hot topic at the border of current physical and information sciences. The quantum walk process represents a basic subroutine in many quantum algorithms and plays an important role in studying physical phenomena. Simulating quantum walk processes is computationally challenging for classical processors. With an increasing improvement in qubits fidelity and qubits number in a single register, there is a potential to improve quantum walks simulations substantially. However, efficient ways to simulate quantum walks in qubit registers still have to be explored. Here, we explore the relationship between quantum walk on graphs and quantum circuits. Firstly, we discuss ways to obtain graphs provided quantum circuit. We then explore techniques to represent quantum walk on a graph as a quantum circuit. Specifically, we study hypercube graphs and arbitrary graphs. Our approach to studying the relationship between graphs and quantum circuits paves way for the efficient implementation of quantum walks algorithms on quantum computers.
作为有噪声的中等规模量子(NISQ)设备的当前量子计算机的模拟和编程是当前物理和信息科学前沿的一个热门话题。量子行走过程是许多量子算法中的一个基本子程序,在研究物理现象中起着重要作用。对经典处理器来说,模拟量子行走过程在计算上具有挑战性。随着单个寄存器中量子比特保真度和量子比特数量的不断提高,大幅改进量子行走模拟具有潜力。然而,在量子比特寄存器中模拟量子行走的有效方法仍有待探索。在这里,我们探索图上的量子行走与量子电路之间的关系。首先,我们讨论在给定量子电路的情况下获得图的方法。然后,我们探索将图上的量子行走表示为量子电路的技术。具体来说,我们研究超立方体图和任意图。我们研究图与量子电路之间关系的方法为在量子计算机上高效实现量子行走算法铺平了道路。