Suppr超能文献

用于增强生物电催化操作的增材制造3D微生物电极。

Additively Manufactured 3D Micro-bioelectrodes for Enhanced Bioelectrocatalytic Operation.

作者信息

Jodeiri Keyvan, Foerster Aleksandra, Trindade Gustavo F, Im Jisun, Carballares Diego, Fernández-Lafuente Roberto, Pita Marcos, De Lacey Antonio L, Parmenter Christopher D, Tuck Christopher

机构信息

Centre for Additive Manufacturing, Faculty of Engineering, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom.

National Physical Laboratory, Hampton Road, Teddington TW11 0LW, United Kingdom.

出版信息

ACS Appl Mater Interfaces. 2023 Mar 10;15(11):14914-24. doi: 10.1021/acsami.2c20262.

Abstract

The drive toward miniaturization of enzyme-based bioelectronics established a need for three-dimensional (3D) microstructured electrodes, which are difficult to implement using conventional manufacturing processes. Additive manufacturing coupled with electroless metal plating enables the production of 3D conductive microarchitectures with high surface area for potential applications in such devices. However, interfacial delamination between the metal layer and the polymer structure is a major reliability concern, which leads to device performance degradation and eventually device failure. This work demonstrates a method to produce a highly conductive and robust metal layer on a 3D printed polymer microstructure with strong adhesion by introducing an interfacial adhesion layer. Prior to 3D printing, multifunctional acrylate monomers with alkoxysilane (-Si-(OCH)) were synthesized via the thiol-Michael addition reaction between pentaerythritol tetraacrylate (PETA) and 3-mercaptopropyltrimethoxysilane (MPTMS) with a 1:1 stoichiometric ratio. Alkoxysilane functionality remains intact during photopolymerization in a projection micro-stereolithography (PμSLA) system and is utilized for the sol-gel reaction with MPTMS during postfunctionalization of the 3D printed microstructure to build an interfacial adhesion layer. This leads to the implementation of abundant thiol functional groups on the surface of the 3D printed microstructure, which can act as a strong binding site for gold during electroless plating to improve interfacial adhesion. The 3D conductive microelectrode prepared by this technique exhibited excellent conductivity of 2.2 × 10 S/m (53% of bulk gold) with strong adhesion between a gold layer and a polymer structure even after harsh sonication and an adhesion tape test. As a proof-of-concept, we examined the 3D gold diamond lattice microelectrode modified with glucose oxidase as a bioanode for a single enzymatic biofuel cell. The lattice-structured enzymatic electrode with high catalytic surface area was able to generate a current density of 2.5 μA/cm at 0.35 V, which is an about 10 times increase in current output compared to a cube-shaped microelectrode.

摘要

酶基生物电子学的小型化趋势使得三维(3D)微结构电极成为必需,而使用传统制造工艺很难实现这种电极。增材制造与化学镀相结合能够生产具有高表面积的3D导电微结构,有望应用于此类器件。然而,金属层与聚合物结构之间的界面分层是一个主要的可靠性问题,这会导致器件性能下降并最终导致器件失效。这项工作展示了一种通过引入界面粘附层在3D打印聚合物微结构上制备具有强附着力的高导电性且坚固的金属层的方法。在3D打印之前,通过季戊四醇四丙烯酸酯(PETA)与3-巯基丙基三甲氧基硅烷(MPTMS)以1:1化学计量比进行的硫醇-迈克尔加成反应,合成了带有烷氧基硅烷(-Si-(OCH))的多功能丙烯酸酯单体。在投影微立体光刻(PμSLA)系统中进行光聚合过程中,烷氧基硅烷官能团保持完整,并在3D打印微结构的后功能化过程中用于与MPTMS进行溶胶-凝胶反应,以构建界面粘附层。这导致在3D打印微结构表面实现了大量的硫醇官能团,在化学镀过程中这些官能团可作为金的强结合位点,从而改善界面附着力。通过该技术制备的3D导电微电极表现出2.2×10 S/m的优异电导率(为块状金的53%),即使在经过剧烈超声处理和胶带粘贴测试后,金层与聚合物结构之间仍具有很强的附着力。作为概念验证,我们研究了用葡萄糖氧化酶修饰的3D金菱形晶格微电极作为单酶生物燃料电池的生物阳极。具有高催化表面积的晶格结构酶电极在0.35 V时能够产生2.5 μA/cm的电流密度,与立方体形微电极相比,电流输出增加了约10倍。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验