Department of Bioengineering, Rice University, Houston, TX 77005, USA.
Department of Bioengineering, University of Washington, Seattle, WA 98195, USA.
Science. 2019 May 3;364(6439):458-464. doi: 10.1126/science.aav9750.
Solid organs transport fluids through distinct vascular networks that are biophysically and biochemically entangled, creating complex three-dimensional (3D) transport regimes that have remained difficult to produce and study. We establish intravascular and multivascular design freedoms with photopolymerizable hydrogels by using food dye additives as biocompatible yet potent photoabsorbers for projection stereolithography. We demonstrate monolithic transparent hydrogels, produced in minutes, comprising efficient intravascular 3D fluid mixers and functional bicuspid valves. We further elaborate entangled vascular networks from space-filling mathematical topologies and explore the oxygenation and flow of human red blood cells during tidal ventilation and distension of a proximate airway. In addition, we deploy structured biodegradable hydrogel carriers in a rodent model of chronic liver injury to highlight the potential translational utility of this materials innovation.
实体器官通过独特的血管网络运输液体,这些网络在生理上和生物化学上相互交织,形成了复杂的三维(3D)运输模式,这些模式一直难以产生和研究。我们通过使用食品染料添加剂作为生物相容性但具有强大光吸收能力的光聚合水凝胶,实现了血管内和多血管的设计自由度,用于投影立体光刻。我们展示了由几分钟内生成的整体透明水凝胶,其中包括高效的血管内 3D 流体混合器和功能性双叶瓣。我们进一步从空间填充数学拓扑结构中阐述了纠缠的血管网络,并在邻近气道的潮汐通气和膨胀过程中研究了人红细胞的氧合和流动。此外,我们在慢性肝损伤的啮齿动物模型中部署了结构化可生物降解水凝胶载体,以突出这种材料创新的潜在转化应用。