Suppr超能文献

采用级联蝴蝶结光子晶体纳束的多重长程电流体传输与纳米光学捕获

Multiplexed Long-Range Electrohydrodynamic Transport and Nano-Optical Trapping with Cascaded Bowtie Photonic Crystal Nanobeams.

机构信息

Interdisciplinary Materials Science, Vanderbilt University, Nashville, Tennessee 37235, USA.

Vanderbilt Institute of Nanoscale Science and Engineering, Vanderbilt University, Nashville, Tennessee 37235, USA.

出版信息

Phys Rev Lett. 2023 Feb 24;130(8):083802. doi: 10.1103/PhysRevLett.130.083802.

Abstract

Photonic crystal cavities with bowtie defects that combine ultrahigh Q and ultralow mode volume are theoretically studied for low-power nanoscale optical trapping. By harnessing the localized heating of the water layer near the bowtie region, combined with an applied alternating current electric field, this system provides long-range electrohydrodynamic transport of particles with average radial velocities of 30  μm/s towards the bowtie region on demand by switching the input wavelength. Once transported to a given bowtie region, synergistic interaction of optical gradient and attractive negative thermophoretic forces stably trap a 10 nm quantum dot in a potential well with a depth of 10  k_{B}T using a mW input power.

摘要

理论上研究了具有蝶形缺陷的光子晶体腔,其具有超高 Q 值和超低模式体积,可用于低功率纳米光学捕获。通过利用蝶形区域附近水层的局部加热,结合外加交流电场,该系统通过切换输入波长按需实现对粒子的长程电动力学输运,平均径向速度可达 30 μm/s。一旦被输送到给定的蝶形区域,光梯度和吸引力负热泳力的协同作用可以使用 1 mW 的输入功率,在 10 kBT 的深度下稳定地捕获 10nm 的量子点。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验