Suppr超能文献

基于空间信息重要性的 QPSO-LSTM 算法预测区域短期货运量。

Forecasting regional short-term freight volume using QPSO-LSTM algorithm from the perspective of the importance of spatial information.

机构信息

School of Economics and Management, Xi'an University of Technology, Xi'an 710048, China.

College of Transportation, Chang'an University, Xi'an 710061, China.

出版信息

Math Biosci Eng. 2023 Jan;20(2):2609-2627. doi: 10.3934/mbe.2023122. Epub 2022 Nov 25.

Abstract

It is of great significance to accurately and efficiently predict expressway freight volume to improving the supervision level of the transportation industry and reflect the performance of transportation. Using expressway toll system records to predict regional freight volume plays an important role in the development of expressway freight organization work; especially, the short-term (hour, daily or monthly) freight volume is directly related to the compilation of regional transportation plans. Artificial neural networks have been widely used in forecasting in various fields because of their unique structural characteristics and strong learning ability, among which the long short-term memory (LSTM) network is suitable for processing and predicting series with time interval attributes such as expressway freight volume data. Considering the factors affecting regional freight volume, the data set was reconstructed from the perspective of spatial importance; we then use a quantum particle swarm optimization (QPSO) algorithm to tune parameters for a conventional LSTM model. In order to verify the efficiency and practicability, we first selected the expressway toll collection system data of Jilin Province from January 2018 to June 2021, and then used database and statistical knowledge to construct the LSTM data set. In the end, we used a QPSO-LSTM algorithm to predict the freight volume at the future times (hour, daily or monthly). Compared with the conventional LSTM model without tuning, the results of four randomly selected grids naming Changchun City, Jilin city, Siping City and Nong'an County show that the QPSO-LSTM network model based on spatial importance has a better effect.

摘要

准确高效地预测高速公路货运量对于提高交通运输行业的监管水平和反映交通运输的绩效具有重要意义。利用高速公路收费系统记录来预测区域货运量,在高速公路货运组织工作的发展中起着重要作用;特别是短期(小时、日或月)货运量直接关系到区域运输计划的编制。人工神经网络由于其独特的结构特点和强大的学习能力,已被广泛应用于各个领域的预测中,其中长短期记忆(LSTM)网络适用于处理和预测具有时间间隔属性的序列,如高速公路货运量数据。考虑到影响区域货运量的因素,从空间重要性的角度对数据集进行了重构;然后,我们使用量子粒子群优化(QPSO)算法来调整传统 LSTM 模型的参数。为了验证其效率和实用性,我们首先从 2018 年 1 月到 2021 年 6 月,选择了吉林省的高速公路收费系统数据,然后利用数据库和统计知识构建了 LSTM 数据集。最后,我们使用 QPSO-LSTM 算法对未来时段(小时、日或月)的货运量进行预测。与未经调整的传统 LSTM 模型相比,对四个随机选择的网格(长春市、吉林市、四平市和农安县)的结果表明,基于空间重要性的 QPSO-LSTM 网络模型效果更好。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验