Suppr超能文献

基于深度学习的颈椎病脊髓型颈椎病扩散张量成像脊髓内部结构自动分割

Deep Learning-Based Auto-Segmentation of Spinal Cord Internal Structure of Diffusion Tensor Imaging in Cervical Spondylotic Myelopathy.

作者信息

Fei Ningbo, Li Guangsheng, Wang Xuxiang, Li Junpeng, Hu Xiaosong, Hu Yong

机构信息

Spinal Division, Orthopedic and Traumatology Center, The Affiliated Hospital of Guangdong Medical University, Zhanjiang 524013, China.

Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong SAR, China.

出版信息

Diagnostics (Basel). 2023 Feb 21;13(5):817. doi: 10.3390/diagnostics13050817.

Abstract

Cervical spondylotic myelopathy (CSM) is a chronic disorder of the spinal cord. ROI-based features on diffusion tensor imaging (DTI) provide additional information about spinal cord status, which would benefit the diagnosis and prognosis of CSM. However, the manual extraction of the DTI-related features on multiple ROIs is time-consuming and laborious. In total, 1159 slices at cervical levels from 89 CSM patients were analyzed, and corresponding fractional anisotropy (FA) maps were calculated. Eight ROIs were drawn, covering both sides of lateral, dorsal, ventral, and gray matter. The UNet model was trained with the proposed heatmap distance loss for auto-segmentation. Mean Dice coefficients on the test dataset for dorsal, lateral, and ventral column and gray matter were 0.69, 0.67, 0.57, 0.54 on the left side and 0.68, 0.67, 0.59, 0.55 on the right side. The ROI-based mean FA value based on segmentation model strongly correlated with the value based on manual drawing. The percentages of the mean absolute error between the two values of multiple ROIs were 0.07, 0.07, 0.11, and 0.08 on the left side and 0.07, 0.1, 0.1, 0.11, and 0.07 on the right side. The proposed segmentation model has the potential to offer a more detailed spinal cord segmentation and would be beneficial for quantifying a more detailed status of the cervical spinal cord.

摘要

脊髓型颈椎病(CSM)是一种脊髓慢性疾病。基于感兴趣区域(ROI)的扩散张量成像(DTI)特征可提供有关脊髓状态的额外信息,这将有助于CSM的诊断和预后评估。然而,在多个ROI上手动提取DTI相关特征既耗时又费力。共分析了89例CSM患者颈椎水平的1159层切片,并计算了相应的分数各向异性(FA)图。绘制了8个ROI,覆盖外侧、背侧、腹侧和灰质的两侧。使用提出的热图距离损失对UNet模型进行训练以实现自动分割。测试数据集上左侧背侧、外侧、腹侧柱和灰质的平均Dice系数分别为0.69、0.67、0.57、0.54,右侧分别为0.68、0.67、0.59、0.55。基于分割模型的基于ROI的平均FA值与基于手动绘制的值高度相关。多个ROI的两个值之间的平均绝对误差百分比在左侧分别为0.07、0.07、0.11和0.08,在右侧分别为0.07、0.1、0.1、0.11和0.07。所提出的分割模型有可能提供更详细的脊髓分割,并且有利于量化颈椎脊髓的更详细状态。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a15e/10000612/b1431a601f37/diagnostics-13-00817-g001.jpg

相似文献

7
A preliminary study of 3.0-T magnetic resonance diffusion tensor imaging in cervical spondylotic myelopathy.
Eur Spine J. 2018 Aug;27(8):1839-1845. doi: 10.1007/s00586-018-5579-z. Epub 2018 Apr 4.

引用本文的文献

1
A Deep-Learning-Based Diffusion Tensor Imaging Pathological Auto-Analysis Method for Cervical Spondylotic Myelopathy.
Bioengineering (Basel). 2025 Jul 27;12(8):806. doi: 10.3390/bioengineering12080806.
4
Using Artificial Intelligence in the Comprehensive Management of Spinal Cord Injury.
Korean J Neurotrauma. 2024 Dec 24;20(4):215-224. doi: 10.13004/kjnt.2024.20.e43. eCollection 2024 Dec.
5
Quantitative MRI Assessment of Post-Surgical Spinal Cord Injury Through Radiomic Analysis.
J Imaging. 2024 Dec 8;10(12):312. doi: 10.3390/jimaging10120312.

本文引用的文献

1
Diagnostic value of diffusion tensor imaging in patients with clinical signs of cervical spondylotic myelopathy.
Neurol Neurochir Pol. 2022;56(4):341-348. doi: 10.5603/PJNNS.a2022.0031. Epub 2022 Apr 26.
2
Anatomical landmark localization via convolutional neural networks for limb-length discrepancy measurements.
Pediatr Radiol. 2021 Jul;51(8):1431-1447. doi: 10.1007/s00247-021-05004-z. Epub 2021 Apr 22.
3
Automatic spinal cord segmentation from axial-view MRI slices using CNN with grayscale regularized active contour propagation.
Comput Biol Med. 2021 May;132:104345. doi: 10.1016/j.compbiomed.2021.104345. Epub 2021 Mar 18.
6
Diffusion tensor imaging in cervical spondylotic myelopathy: a review.
J Neurosurg Spine. 2020 Feb 28;33(1):65-72. doi: 10.3171/2019.12.SPINE191158. Print 2020 Jul 1.
7
Boundary-Weighted Domain Adaptive Neural Network for Prostate MR Image Segmentation.
IEEE Trans Med Imaging. 2020 Mar;39(3):753-763. doi: 10.1109/TMI.2019.2935018. Epub 2019 Aug 13.
8
Assessment of the systematic errors caused by diffusion gradient inhomogeneity in DTI-computer simulations.
NMR Biomed. 2019 Nov;32(11):e4130. doi: 10.1002/nbm.4130. Epub 2019 Jul 25.
9
Diffusion Tensor Imaging for Surgical Planning in Patients with Cervical Spondylotic Myelopathy.
J Neurol Surg A Cent Eur Neurosurg. 2020 Jan;81(1):1-9. doi: 10.1055/s-0039-1691822. Epub 2019 Jun 10.
10
Prognosis of cervical myelopathy based on diffusion tensor imaging with artificial intelligence methods.
NMR Biomed. 2019 Aug;32(8):e4114. doi: 10.1002/nbm.4114. Epub 2019 May 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验