Suppr超能文献

通过放射组学分析对手术后脊髓损伤进行定量MRI评估。

Quantitative MRI Assessment of Post-Surgical Spinal Cord Injury Through Radiomic Analysis.

作者信息

Sharafi Azadeh, Klein Andrew P, Koch Kevin M

机构信息

Radiology Department, Medical College of Wisconsin, Milwaukee, WI 53226, USA.

出版信息

J Imaging. 2024 Dec 8;10(12):312. doi: 10.3390/jimaging10120312.

Abstract

This study investigates radiomic efficacy in post-surgical traumatic spinal cord injury (SCI), overcoming MRI limitations from metal artifacts to enhance diagnosis, severity assessment, and lesion characterization or prognosis and therapy guidance. Traumatic spinal cord injury (SCI) causes severe neurological deficits. While MRI allows qualitative injury evaluation, standard imaging alone has limitations for precise SCI diagnosis, severity stratification, and pathology characterization, which are needed to guide prognosis and therapy. Radiomics enables quantitative tissue phenotyping by extracting a high-dimensional set of descriptive texture features from medical images. However, the efficacy of postoperative radiomic quantification in the presence of metal-induced MRI artifacts from spinal instrumentation has yet to be fully explored. A total of 50 healthy controls and 12 SCI patients post-stabilization surgery underwent 3D multi-spectral MRI. Automated spinal cord segmentation was followed by radiomic feature extraction. Supervised machine learning categorized SCI versus controls, injury severity, and lesion location relative to instrumentation. Radiomics differentiated SCI patients (Matthews correlation coefficient (MCC) 0.97; accuracy 1.0), categorized injury severity (MCC: 0.95; ACC: 0.98), and localized lesions (MCC: 0.85; ACC: 0.90). Combined T and T features outperformed individual modalities across tasks with gradient boosting models showing the highest efficacy. The radiomic framework achieved excellent performance, differentiating SCI from controls and accurately categorizing injury severity. The ability to reliably quantify SCI severity and localization could potentially inform diagnosis, prognosis, and guide therapy. Further research is warranted to validate radiomic SCI biomarkers and explore clinical integration.

摘要

本研究调查了放射组学在术后创伤性脊髓损伤(SCI)中的功效,克服了金属伪影对MRI的限制,以加强诊断、严重程度评估、病变特征描述或预后及治疗指导。创伤性脊髓损伤(SCI)会导致严重的神经功能缺损。虽然MRI能够进行定性损伤评估,但仅靠标准成像在精确的SCI诊断、严重程度分层及病理特征描述方面存在局限性,而这些对于指导预后和治疗是必要的。放射组学通过从医学图像中提取一组高维的描述性纹理特征来实现定量组织表型分析。然而,在存在脊柱内固定装置引起的金属诱导MRI伪影的情况下,术后放射组学量化的功效尚未得到充分探索。共有50名健康对照者和12名接受稳定手术后的SCI患者接受了3D多光谱MRI检查。在自动进行脊髓分割后进行放射组学特征提取。监督式机器学习对SCI与对照、损伤严重程度以及相对于内固定装置的病变位置进行了分类。放射组学能够区分SCI患者(马修斯相关系数(MCC)为0.97;准确率为1.0),对损伤严重程度进行分类(MCC:0.95;ACC:0.98),并定位病变(MCC:0.85;ACC:0.90)。在各项任务中,联合T和T特征的表现优于单个模态,梯度提升模型显示出最高的功效。放射组学框架表现出色,能够区分SCI与对照,并准确分类损伤严重程度。可靠量化SCI严重程度和定位的能力可能为诊断、预后提供信息并指导治疗。有必要进行进一步研究以验证放射组学SCI生物标志物并探索临床整合。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/692f/11678099/1d965a9a868a/jimaging-10-00312-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验