Ma Haichao, Xu Chao, Nie Chao, Han Jubao, Li Yingjie, Liu Chuanxu
School of Integrated Circuits, Anhui University, Hefei 230601, China.
Anhui Engineering Laboratory of Agro-Ecological Big Data, Hefei 230601, China.
Diagnostics (Basel). 2023 Feb 27;13(5):896. doi: 10.3390/diagnostics13050896.
Automatic segmentation of polyps during colonoscopy can help doctors accurately find the polyp area and remove abnormal tissues in time to reduce the possibility of polyps transforming into cancer. However, the current polyp segmentation research still has the following problems: blurry polyp boundaries, multi-scale adaptability of polyps, and close resemblances between polyps and nearby normal tissues. To tackle these issues, this paper proposes a dual boundary-guided attention exploration network (DBE-Net) for polyp segmentation. Firstly, we propose a dual boundary-guided attention exploration module to solve the boundary-blurring problem. This module uses a coarse-to-fine strategy to progressively approximate the real polyp boundary. Secondly, a multi-scale context aggregation enhancement module is introduced to accommodate the multi-scale variation of polyps. Finally, we propose a low-level detail enhancement module, which can extract more low-level details and promote the performance of the overall network. Extensive experiments on five polyp segmentation benchmark datasets show that our method achieves superior performance and stronger generalization ability than state-of-the-art methods. Especially for CVC-ColonDB and ETIS, two challenging datasets among the five datasets, our method achieves excellent results of 82.4% and 80.6% in terms of mDice (mean dice similarity coefficient) and improves by 5.1% and 5.9% compared to the state-of-the-art methods.
结肠镜检查过程中息肉的自动分割有助于医生准确找到息肉区域并及时切除异常组织,以降低息肉癌变的可能性。然而,当前的息肉分割研究仍存在以下问题:息肉边界模糊、息肉的多尺度适应性以及息肉与附近正常组织之间的相似性。为了解决这些问题,本文提出了一种用于息肉分割的双边界引导注意力探索网络(DBE-Net)。首先,我们提出了一个双边界引导注意力探索模块来解决边界模糊问题。该模块采用从粗到细的策略逐步逼近真实的息肉边界。其次,引入了一个多尺度上下文聚合增强模块来适应息肉的多尺度变化。最后,我们提出了一个低级细节增强模块,它可以提取更多的低级细节并提升整个网络的性能。在五个息肉分割基准数据集上进行的大量实验表明,我们的方法比现有方法具有更优的性能和更强的泛化能力。特别是对于五个数据集中具有挑战性的两个数据集CVC-ColonDB和ETIS,我们的方法在平均骰子相似系数(mDice)方面分别达到了82.4%和80.6%的优异结果,与现有方法相比分别提高了5.1%和5.9%。