IEEE Trans Med Imaging. 2021 Apr;40(4):1134-1146. doi: 10.1109/TMI.2020.3046843. Epub 2021 Apr 1.
The automatic segmentation of polyp in endoscopy images is crucial for early diagnosis and cure of colorectal cancer. Existing deep learning-based methods for polyp segmentation, however, are inadequate due to the limited annotated dataset and the class imbalance problems. Moreover, these methods obtained the final polyp segmentation results by simply thresholding the likelihood maps at an eclectic and equivalent value (often set to 0.5). In this paper, we propose a novel ThresholdNet with a confidence-guided manifold mixup (CGMMix) data augmentation method, mainly for addressing the aforementioned issues in polyp segmentation. The CGMMix conducts manifold mixup at the image and feature levels, and adaptively lures the decision boundary away from the under-represented polyp class with the confidence guidance to alleviate the limited training dataset and the class imbalance problems. Two consistency regularizations, mixup feature map consistency (MFMC) loss and mixup confidence map consistency (MCMC) loss, are devised to exploit the consistent constraints in the training of the augmented mixup data. We then propose a two-branch approach, termed ThresholdNet, to collaborate the segmentation and threshold learning in an alternative training strategy. The threshold map supervision generator (TMSG) is embedded to provide supervision for the threshold map, thereby inducing better optimization of the threshold branch. As a consequence, ThresholdNet is able to calibrate the segmentation result with the learned threshold map. We illustrate the effectiveness of the proposed method on two polyp segmentation datasets, and our methods achieved the state-of-the-art result with 87.307% and 87.879% dice score on the EndoScene dataset and the WCE polyp dataset. The source code is available at https://github.com/Guo-Xiaoqing/ThresholdNet.
内窥镜图像中息肉的自动分割对于结直肠癌的早期诊断和治疗至关重要。然而,现有的基于深度学习的息肉分割方法由于标注数据集有限和类别不平衡问题,效果并不理想。此外,这些方法通过简单地在一个随意选择的等效值(通常设置为 0.5)对似然图进行阈值处理来获得最终的息肉分割结果。在本文中,我们提出了一种新的基于置信度引导流形混合(CGMMix)数据增强方法的 ThresholdNet,主要用于解决息肉分割中的上述问题。CGMMix 在图像和特征级别上进行流形混合,并通过置信度引导自适应地将决策边界从代表性不足的息肉类别中吸引开,以缓解有限的训练数据集和类别不平衡问题。我们设计了两种一致性正则化,即混合特征图一致性(MFMC)损失和混合置信度图一致性(MCMC)损失,以利用增强混合数据训练中的一致性约束。然后,我们提出了一种两分支方法,称为 ThresholdNet,以在替代训练策略中协作分割和阈值学习。嵌入了阈值图监督生成器(TMSG),为阈值图提供监督,从而诱导更好地优化阈值分支。因此,ThresholdNet 能够使用学习到的阈值图来校准分割结果。我们在两个息肉分割数据集上验证了所提出方法的有效性,我们的方法在 EndoScene 数据集和 WCE 息肉数据集上分别获得了 87.307%和 87.879%的骰子分数,达到了最新水平。代码可在 https://github.com/Guo-Xiaoqing/ThresholdNet 上获得。