Gentile Francesco, La Civita Evelina, Ventura Bartolomeo Della, Ferro Matteo, Bruzzese Dario, Crocetto Felice, Tennstedt Pierre, Steuber Thomas, Velotta Raffaele, Terracciano Daniela
Nanotechnology Research Centre, Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy.
ElicaDea, Spinoff of Federico II University, 80131 Naples, Italy.
Cancers (Basel). 2023 Feb 21;15(5):1355. doi: 10.3390/cancers15051355.
The Prostate Health Index (PHI) and Proclarix (PCLX) have been proposed as blood-based tests for prostate cancer (PCa). In this study, we evaluated the feasibility of an artificial neural network (ANN)-based approach to develop a combinatorial model including PHI and PCLX biomarkers to recognize clinically significant PCa (csPCa) at initial diagnosis.
To this aim, we prospectively enrolled 344 men from two different centres. All patients underwent radical prostatectomy (RP). All men had a prostate-specific antigen (PSA) between 2 and 10 ng/mL. We used an artificial neural network to develop models that can identify csPCa efficiently. As inputs, the model uses [-2]proPSA, freePSA, total PSA, cathepsin D, thrombospondin, and age.
The output of the model is an estimate of the presence of a low or high Gleason score PCa defined at RP. After training on a dataset of up to 220 samples and optimization of the variables, the model achieved values as high as 78% for sensitivity and 62% for specificity for all-cancer detection compared with those of PHI and PCLX alone. For csPCa detection, the model showed 66% (95% CI 66-68%) for sensitivity and 68% (95% CI 66-68%) for specificity. These values were significantly different compared with those of PHI ( < 0.0001 and 0.0001, respectively) and PCLX ( = 0.0003 and 0.0006, respectively) alone.
Our preliminary study suggests that combining PHI and PCLX biomarkers may help to estimate, with higher accuracy, the presence of csPCa at initial diagnosis, allowing a personalized treatment approach. Further studies training the model on larger datasets are strongly encouraged to support the efficiency of this approach.
前列腺健康指数(PHI)和Proclarix(PCLX)已被提议作为前列腺癌(PCa)的血液检测指标。在本研究中,我们评估了基于人工神经网络(ANN)的方法开发一个包含PHI和PCLX生物标志物的组合模型以在初始诊断时识别临床显著前列腺癌(csPCa)的可行性。
为此,我们前瞻性地招募了来自两个不同中心的344名男性。所有患者均接受了根治性前列腺切除术(RP)。所有男性的前列腺特异性抗原(PSA)在2至10 ng/mL之间。我们使用人工神经网络开发能够有效识别csPCa的模型。作为输入,该模型使用[-2]proPSA、游离PSA、总PSA、组织蛋白酶D、血小板反应蛋白和年龄。
该模型的输出是对RP时定义的低或高Gleason评分PCa存在情况的估计。在多达220个样本的数据集上进行训练并对变量进行优化后,与单独使用PHI和PCLX相比,该模型在所有癌症检测中的灵敏度高达78%,特异性为62%。对于csPCa检测,该模型的灵敏度为66%(95%CI 66 - 68%),特异性为68%(95%CI 66 - 68%)。这些值与单独使用PHI(分别为<0.0001和0.0001)和PCLX(分别为0.0003和0.0006)相比有显著差异。
我们的初步研究表明,将PHI和PCLX生物标志物结合起来可能有助于在初始诊断时更准确地估计csPCa的存在情况,从而实现个性化治疗方案。强烈鼓励进一步在更大的数据集上对该模型进行训练的研究,以支持这种方法的有效性。