Suppr超能文献

功能聚类回归的异质学习及其在中国空气污染数据中的应用。

Heterogeneous Learning of Functional Clustering Regression and Application to Chinese Air Pollution Data.

机构信息

School of Statistics, Huaqiao University, Xiamen 361021, China.

Department of Economics, Xiamen University, Xiamen 361005, China.

出版信息

Int J Environ Res Public Health. 2023 Feb 25;20(5):4155. doi: 10.3390/ijerph20054155.

Abstract

Clustering algorithms are widely used to mine the heterogeneity between meteorological observations. However, traditional applications suffer from information loss due to data processing and pay little attention to the interaction between meteorological indicators. In this paper, we combine the ideas of functional data analysis and clustering regression, and propose a functional clustering regression heterogeneity learning model (FCR-HL), which respects the data generation process of meteorological data while incorporating the interaction between meteorological indicators into the analysis of meteorological data heterogeneity. In addition, we provide an algorithm for FCR-HL to automatically select the number of clusters, which has good statistical properties. In the later empirical study based on PM concentrations and PM concentrations in China, we found that the interaction between PM and PM varies significantly between regions, showing several types of significant patterns, which provide meteorologists with new perspectives to further study the effects between meteorological indicators.

摘要

聚类算法被广泛应用于挖掘气象观测之间的异质性。然而,传统的应用由于数据处理而存在信息丢失的问题,并且很少关注气象指标之间的相互作用。在本文中,我们结合了函数数据分析和聚类回归的思想,提出了一种功能聚类回归异质性学习模型(FCR-HL),它在尊重气象数据生成过程的同时,将气象指标之间的相互作用纳入气象数据异质性分析中。此外,我们还提供了一种用于 FCR-HL 的算法,以自动选择聚类的数量,该算法具有良好的统计性质。在基于 PM 浓度和中国 PM 浓度的后续实证研究中,我们发现 PM 和 PM 之间的相互作用在不同地区之间存在显著差异,呈现出几种类型的显著模式,这为气象学家提供了新的视角,以进一步研究气象指标之间的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d572/10002127/9038b0381043/ijerph-20-04155-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验