Suppr超能文献

荧光生物探针实现斑马鱼活体脑组织中锌离子的时空成像。

Spatiotemporal Imaging of Zinc Ions in Zebrafish Live Brain Tissue Enabled by Fluorescent Bionanoprobes.

机构信息

Department of Chemistry and R.N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, KS 66045, USA.

UNESCO Laboratory of Environmental Electrochemistry, Department of Analytical Chemistry, Charles University, 12843 Prague 2, Czech Republic.

出版信息

Molecules. 2023 Feb 28;28(5):2260. doi: 10.3390/molecules28052260.

Abstract

The zebrafish is a powerful model organism to study the mechanisms governing transition metal ions within whole brain tissue. Zinc is one of the most abundant metal ions in the brain, playing a critical pathophysiological role in neurodegenerative diseases. The homeostasis of free, ionic zinc (Zn) is a key intersection point in many of these diseases, including Alzheimer's disease and Parkinson's disease. A Zn imbalance can eventuate several disturbances that may lead to the development of neurodegenerative changes. Therefore, compact, reliable approaches that allow the optical detection of Zn across the whole brain would contribute to our current understanding of the mechanisms that underlie neurological disease pathology. We developed an engineered fluorescence protein-based nanoprobe that can spatially and temporally resolve Zn in living zebrafish brain tissue. The self-assembled engineered fluorescence protein on gold nanoparticles was shown to be confined to defined locations within the brain tissue, enabling site specific studies, compared to fluorescent protein-based molecular tools, which diffuse throughout the brain tissue. Two-photon excitation microscopy confirmed the physical and photometrical stability of these nanoprobes in living zebrafish () brain tissue, while the addition of Zn quenched the nanoprobe fluorescence. Combining orthogonal sensing methods with our engineered nanoprobes will enable the study of imbalances in homeostatic Zn regulation. The proposed bionanoprobe system offers a versatile platform to couple metal ion specific linkers and contribute to the understanding of neurological diseases.

摘要

斑马鱼是研究整个脑组织中过渡金属离子的机制的有力模式生物。锌是大脑中最丰富的金属离子之一,在神经退行性疾病中起着关键的病理生理作用。游离离子锌(Zn)的内环境平衡是许多此类疾病(包括阿尔茨海默病和帕金森病)的一个关键交汇点。Zn 失衡可能导致多种紊乱,从而导致神经退行性变化的发展。因此,能够在整个大脑中进行光学检测 Zn 的紧凑、可靠的方法将有助于我们目前对神经疾病病理学基础机制的理解。我们开发了一种基于工程化荧光蛋白的纳米探针,可在活体斑马鱼脑组织中实现 Zn 的空间和时间分辨。与荧光蛋白基分子工具相比,自组装的金纳米颗粒上的工程化荧光蛋白被限制在脑组织的特定位置,从而能够进行特定部位的研究,而荧光蛋白基分子工具会在脑组织中扩散。双光子激发显微镜证实了这些纳米探针在活体斑马鱼()脑组织中的物理和光电稳定性,而添加 Zn 则使纳米探针荧光猝灭。将正交感应方法与我们的工程纳米探针相结合,将能够研究体内平衡 Zn 调节的失衡。所提出的生物纳米探针系统提供了一个通用平台,可用于连接特定于金属离子的接头,并有助于理解神经疾病。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/27a5/10005619/9122ddcc7817/molecules-28-02260-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验