Suppr超能文献

基于三种定量方法的肯尼亚重要药用和食用分类群(目与科)

Important Medicinal and Food Taxa (Orders and Families) in Kenya, Based on Three Quantitative Approaches.

作者信息

Mutie Fredrick Munyao, Mbuni Yuvenalis Morara, Rono Peninah Cheptoo, Mkala Elijah Mbandi, Nzei John Mulinge, Phumthum Methee, Hu Guang-Wan, Wang Qing-Feng

机构信息

CAS Key Laboratory of Plant Germplasm and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.

Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China.

出版信息

Plants (Basel). 2023 Mar 2;12(5):1145. doi: 10.3390/plants12051145.

Abstract

Globally, food and medicinal plants have been documented, but their use patterns are poorly understood. Useful plants are non-random subsets of flora, prioritizing certain taxa. This study evaluates orders and families prioritized for medicine and food in Kenya, using three statistical models: Regression, Binomial, and Bayesian approaches. An extensive literature search was conducted to gather information on indigenous flora, medicinal and food plants. Regression residuals, obtained using LlNEST linear regression function, were used to quantify if taxa had unexpectedly high number of useful species relative to the overall proportion in the flora. Bayesian analysis, performed using BETA.INV function, was used to obtain superior and inferior 95% probability credible intervals for the whole flora and for all taxa. To test for the significance of individual taxa departure from the expected number, binomial analysis using BINOMDIST function was performed to obtain -values for all taxa. The three models identified 14 positive outlier medicinal orders, all with significant values ( < 0.05). Fabales had the highest (66.16) regression residuals, while Sapindales had the highest (1.1605) R-value. Thirty-eight positive outlier medicinal families were identified; 34 were significant outliers ( < 0.05). Rutaceae (1.6808) had the highest R-value, while Fabaceae had the highest regression residuals (63.2). Sixteen positive outlier food orders were recovered; 13 were significant outliers ( < 0.05). Gentianales (45.27) had the highest regression residuals, while Sapindales (2.3654) had the highest R-value. Forty-two positive outlier food families were recovered by the three models; 30 were significant outliers ( < 0.05). Anacardiaceae (5.163) had the highest R-value, while Fabaceae had the highest (28.72) regression residuals. This study presents important medicinal and food taxa in Kenya, and adds useful data for global comparisons.

摘要

在全球范围内,食用和药用植物都有记载,但人们对它们的使用模式了解甚少。有用植物是植物区系的非随机子集,对某些分类群具有优先性。本研究使用回归、二项式和贝叶斯三种统计模型,评估了肯尼亚在医学和食品方面具有优先性的目和科。进行了广泛的文献检索,以收集有关本土植物区系、药用和食用植物的信息。使用LlNEST线性回归函数获得的回归残差,用于量化分类群相对于植物区系中总体比例是否具有意外高数量的有用物种。使用BETA.INV函数进行的贝叶斯分析,用于获得整个植物区系和所有分类群的95%概率可信区间的上限和下限。为了检验各个分类群偏离预期数量的显著性,使用BINOMDIST函数进行二项式分析,以获得所有分类群的P值。这三种模型确定了14个正向异常值药用目,所有这些目都具有显著P值(P<0.05)。豆目具有最高的(66.16)回归残差,而无患子目具有最高的(1.1605)R值。确定了38个正向异常值药用科;34个是显著异常值(P<0.05)。芸香科(1.6808)具有最高的R值,而豆科具有最高的回归残差(63.2)。发现了16个正向异常值食用目;13个是显著异常值(P<0.05)。龙胆目(45.27)具有最高的回归残差,而无患子目(2.3654)具有最高的R值。这三种模型共发现42个正向异常值食用科;30个是显著异常值(P<0.05)。漆树科(5.163)具有最高的R值,而豆科具有最高的(28.72)回归残差。本研究展示了肯尼亚重要的药用和食用分类群,并为全球比较增添了有用的数据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/37f4/10005506/e28f7196b013/plants-12-01145-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验