Suppr超能文献

基于反馈机制的 EEG 和 ECG 多传感器融合计算的实时疲劳驾驶识别

EEG and ECG-Based Multi-Sensor Fusion Computing for Real-Time Fatigue Driving Recognition Based on Feedback Mechanism.

机构信息

Department of Computer Science and Technology, School of Computer Science, Northeast Electric Power University, Jilin 132013, China.

Data Science Laboratory, Faculty of Information Technology, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam.

出版信息

Sensors (Basel). 2023 Oct 11;23(20):8386. doi: 10.3390/s23208386.

Abstract

A variety of technologies that could enhance driving safety are being actively explored, with the aim of reducing traffic accidents by accurately recognizing the driver's state. In this field, three mainstream detection methods have been widely applied, namely visual monitoring, physiological indicator monitoring and vehicle behavior analysis. In order to achieve more accurate driver state recognition, we adopted a multi-sensor fusion approach. We monitored driver physiological signals, electroencephalogram (EEG) signals and electrocardiogram (ECG) signals to determine fatigue state, while an in-vehicle camera observed driver behavior and provided more information for driver state assessment. In addition, an outside camera was used to monitor vehicle position to determine whether there were any driving deviations due to distraction or fatigue. After a series of experimental validations, our research results showed that our multi-sensor approach exhibited good performance for driver state recognition. This study could provide a solid foundation and development direction for future in-depth driver state recognition research, which is expected to further improve road safety.

摘要

各种可以提高驾驶安全性的技术正在被积极探索,旨在通过准确识别驾驶员的状态来减少交通事故。在这一领域,有三种主流的检测方法得到了广泛的应用,分别是视觉监测、生理指标监测和车辆行为分析。为了实现更精确的驾驶员状态识别,我们采用了多传感器融合的方法。我们监测驾驶员的生理信号、脑电图(EEG)信号和心电图(ECG)信号来确定疲劳状态,同时车内的摄像头观察驾驶员的行为,为驾驶员状态评估提供更多信息。此外,外部摄像头用于监测车辆位置,以确定是否由于分心或疲劳而导致驾驶偏差。经过一系列的实验验证,我们的研究结果表明,我们的多传感器方法在驾驶员状态识别方面表现出了良好的性能。这项研究为未来深入的驾驶员状态识别研究提供了坚实的基础和发展方向,有望进一步提高道路安全。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4fdc/10611368/8c002e3fd932/sensors-23-08386-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验