Department of Artificial Intelligence, Dongguk University, 30 Pildong-ro 1 Gil, Seoul 04620, Republic of Korea.
Sensors (Basel). 2023 Mar 3;23(5):2787. doi: 10.3390/s23052787.
Because of societal changes, human activity recognition, part of home care systems, has become increasingly important. Camera-based recognition is mainstream but has privacy concerns and is less accurate under dim lighting. In contrast, radar sensors do not record sensitive information, avoid the invasion of privacy, and work in poor lighting. However, the collected data are often sparse. To address this issue, we propose a novel Multimodal Two-stream GNN Framework for Efficient Point Cloud and Skeleton Data Alignment (MTGEA), which improves recognition accuracy through accurate skeletal features from Kinect models. We first collected two datasets using the mmWave radar and Kinect v4 sensors. Then, we used zero-padding, Gaussian Noise (GN), and Agglomerative Hierarchical Clustering (AHC) to increase the number of collected point clouds to 25 per frame to match the skeleton data. Second, we used Spatial Temporal Graph Convolutional Network (ST-GCN) architecture to acquire multimodal representations in the spatio-temporal domain focusing on skeletal features. Finally, we implemented an attention mechanism aligning the two multimodal features to capture the correlation between point clouds and skeleton data. The resulting model was evaluated empirically on human activity data and shown to improve human activity recognition with radar data only. All datasets and codes are available in our GitHub.
由于社会的变化,人体活动识别作为家庭护理系统的一部分变得越来越重要。基于摄像头的识别是主流,但存在隐私问题,并且在光线较暗的情况下准确性较低。相比之下,雷达传感器不会记录敏感信息,避免侵犯隐私,并且在光线较差的情况下工作。然而,收集到的数据通常很稀疏。针对这个问题,我们提出了一种新颖的多模态双流图神经网络框架,用于高效点云和骨骼数据对齐(MTGEA),通过 Kinect 模型提供的准确骨骼特征来提高识别准确性。我们首先使用 mmWave 雷达和 Kinect v4 传感器收集了两个数据集。然后,我们使用零填充、高斯噪声(GN)和凝聚层次聚类(AHC)将每个帧中收集的点云数量增加到 25 个,以匹配骨骼数据。其次,我们使用时空图卷积网络(ST-GCN)架构在时空域中获取多模态表示,重点关注骨骼特征。最后,我们实现了一种注意力机制,对齐两个多模态特征,以捕获点云和骨骼数据之间的相关性。在人体活动数据上进行的实证评估表明,该模型仅使用雷达数据即可提高人体活动识别的准确性。所有数据集和代码都可在我们的 GitHub 上获得。